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Learning to optimize with convergence guarantees
using nonlinear system theory

[1] Andrea Martin and Luca Furieri, “Learning to optimize with convergence guarantees using nonlinear system theory”, 
IEEE LCSS, 2024

Part 2
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Algorithm design

1. Convergence as

2. Speed: find stationary point in few steps

3. Quality: find low-cost stationary point

Iterative optimization algorithmNon-convex program Algorithm requirements:

Learning-based designAnalytic design

[1] Lessard, Recht, Packard, “Analysis and design of optimization algorithms via integral quadratic constraints ”, SIAM Journal on Optimization, 2016
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Background: system theory for algorithm design

[1] Lessard, Recht, Packard, “Analysis and design of optimization algorithms via integral quadratic constraints”, SIAM Journal on Optimization, 2016

Classical optimization algorithms (gradient descent, accelerated…) as Lure’s systems

Example:

[2] Scherer, C., & Ebenbauer, C. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 4615-4645, 2021

uncertain plant

linear controller with memory
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Background: system theory for algorithm design

[1] Lessard, Recht, Packard, “Analysis and design of optimization algorithms via integral quadratic constraints”, SIAM Journal on Optimization, 2016

Classical optimization algorithms (gradient descent, accelerated…) as Lure’s systems

uncertain plant

linear controller with memory

[2] Scherer, C., & Ebenbauer, C. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 4615-4645, 2021

▪ Design of new algorithms, i.e., matrices (A,B,C)… 
▪ …leveraging IQCs and robust control theory[1],[2]

Optimal worst-case convergence rates Limited to convex objective functions
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Background: machine learning for algorithm design

[1] Andrychowicz, M., ... & De Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. Advances in neural information processing systems
[2] Li, K., & Malik, J. Learning to optimize. International Conference on Learning Representations, 2016

Idea: let a neural network guide the algorithm updates

Train parameters     to minimize  

promotes solution quality 

class of example 
problems of interest

promotes convergence

Empirical performance and generalization Lack of formal guarantees
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Train parameters     to minimize  

promotes solution quality 

class of example 
problems of interest

promotes convergence

Background: machine learning for algorithm design

Idea: let a neural network guide the algorithm updates
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Problem formulation
Design of optimal convergent algorithms

Algorithm 
dynamics

Let       denote the class of non-convex functions with   -Lipschitz gradients:
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Problem formulation

Algorithm 
dynamics

Let       denote the class of non-convex functions with   -Lipschitz gradients:

Example: the gradient descent algorithm                                                               if                              
[1] Bertsekas, D. P., & Tsitsiklis, J. N. «Gradient convergence in gradient methods with errors. SIAM Journal on Optimization», 10(3), 627-642, 2000

Design of optimal convergent algorithms
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Main result 1: a separation principle for algorithms

Consider the algorithm:

gradient descent 
ensures convergence

enhancement term to be designed 
without ruining convergence 

If                     ,                                           for any 

[1 ]Khalil, H. K. (2002). Nonlinear systems.

Needs proof: exponential stability with            generally does not imply stability when           l[1]
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Main result 2: completeness

Take any             that converges              :

There exist                such that                                  and

yield the same trajectories

Proof insight: design a stable closed-loop map, rather than an update rule

Equivalence of                                                         and

by picking                                                        . 



University of California San Diego, 12 February 2025Luca Furieri Learning to control and optimize 46

Implications

Learning convergent algorithms using automatic differentiation

how to search over these operators?
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Implications

Unconstrained parametrizations of       operators (Part 1)

Learning convergent algorithms using automatic differentiation
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Learning convergent algorithms using automatic differentiation

Implications

Unconstrained parametrizations of       operators (Part 1)
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Main result 2★: learning with input features

unit direction vector

radius vector

replace with
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Main result 2★: learning with input features

unit direction vector

radius vector

replace with

…preserves one-to-one parametrization!

▪ Proof of sufficiency: by construction

▪ Proof of necessity: reduces to the previous case by writing                in polar coordinates
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If             and                               ,                                          converges asymptotically

instantaneous bounds

Main result 3: the case of gradients with errors

Typical scenario in machine learning:                                           access to            only

sufficient condition consistent with SGD

Compatibility with machine learning tasks with batch data
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Experiment: training a perceptron for image classification

classifier
prediction

tanh
data and labels

Training of the learned algorithm

train the classifier with the update

current algorithm 
parametersclassifier training loss

classifier initial weights distribution
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Experiment: training a perceptron for image classification

classifier
prediction

tanh
data and labels

Training of the learned algorithm

train the classifier with the update

classifier initial weights distribution

After training the classifier, we get one evaluation of                             …
…repeat several times to approximate                                          , then update  
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Experiment: training a perceptron for image classification

classifier
prediction

tanh
data and labels

Testing of the learned algorithm:     is kept frozen 

train the classifier with the update

final algorithm parameters

Compare training curves          with fine-tuned classical optimizers
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Experiment: training a perceptron for image classification

classifier
predictiondata and labels

Testing of the learned algorithm:     is kept frozen 

train the classifier with the update

Compare training curves          with fine-tuned classical optimizers

tanh/ sigmoid/ relu

what about generalization?
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Experiment: training a perceptron for image classification
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Opt im izat ion steps
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Activation function: tanh

Classifier 
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curves
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Experiment: training a perceptron for image classification
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Activation function: sigmoid Activation function: relu
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Experiment: training a perceptron for image classification
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(b) Activation function: sigmoid.
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(c) Activation function: ReLU.

Fig. 1. Training curves of learned and hand-crafted optimizers; shaded areas and solid lines denote standard deviations and mean values,
respectively.

Step t = 20 tanh sigmoid ReLU
Adam 71.7± 5.1% 76.1± 3.1% 52.7± 11.1%
SGD 44.9± 4.2% 79.7± 1.9% 49.8± 9.3%
NAG 79.7± 1.4% 81.1± 1.5% 52.7± 10.2%

RMSprop 69.4± 2.9% 72.8± 2.3% 61.1± 8.9%
ConvergentL2O 87.0 ± 0.5% 86.8 ± 0.6% 86.3± 0.6%

LSTM 82.2± 0.1% 83.3± 0.1% 88.3 ± 0.0%

Step t = 300 tanh sigmoid ReLU
Adam 89.5 ± 0.5% 89.6 ± 0.3% 70.3± 12.2%
SGD 87.4± 0.4% 89.3± 0.3% 80.6± 8.1%
NAG 89.4± 0.2% 89.4± 0.2% 82.2± 7.6%

RMSprop 87.6± 2.1% 88.5± 0.4% 81.5± 7.5%
ConvergentL2O 88.5± 0.2% 88.4± 0.3% 87.7± 0.2%

LSTM 81.4± 0.0% 81.4± 0.0% 88.3 ± 0.0%

the optimization landscape of the ReLU classif er, which may
proveparticularly challenging, ashighlighted in [13], due to its
structural differencewith respect to tanh in (18). Future work
will address the generalization of algorithms trained on the
MNIST dataset to different test datasets, e.g., Fashion-MNIST;
such generalization wasnot achieved using thecurrent shallow
classif er architecture (18).
To compare with alternative L2O approaches [13], we have

trained for 200 epochs a two-layer Long Short-Term Memory
(LSTM) optimizer ut = LSTM(xt ,∇f (xt ), f (xt )). As shown
in the table above, the LSTM optimizer achieves similar aver-
age test accuracy as our ConvergentL2O algorithm. Nonethe-
less, the LSTM output ut does not vanish with time, causing
theclassif er parameters to diverge7 – similar phenomenawere
also observed in [15]. None of our simulations exhibited such
divergence as per Theorem 2.

V. CONCLUSION
In this paper, we have introduced a methodology for learn-

ing over all convergent update rules for smooth non-convex op-
timization, thus enabling the automated synthesis of more re-
liable, eff cient, and reconf gurable algorithms. By synergizing
nonlinear system theory with the emerging L2O paradigm, we
aimed to close thegap between off ine, theory-based algorithm
design and adaptable, example-driven approaches that are the
hallmark of ML. Building on the proposed control-theoretic
perspective we have embraced, further avenues for future
research include certifying stronger convergence guarantees of

7We refer to https://github.com/andrea-martin/ConvergentL2O for the cor-
responding plots and the source code reproducing our numerical examples.

learned algorithms for convex optimization, analyzing gener-
alization capabilities, extending our framework to online and
constrained optimization scenarios, and federated learning.
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Experiment: training a perceptron for image classification
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(b) Activation function: sigmoid.
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(c) Activation function: ReLU.

Fig. 1. Training curves of learned and hand-crafted optimizers; shaded areas and solid lines denote standard deviations and mean values,
respectively.

Step t = 20 tanh sigmoid ReLU
Adam 71.7± 5.1% 76.1± 3.1% 52.7± 11.1%
SGD 44.9± 4.2% 79.7± 1.9% 49.8± 9.3%
NAG 79.7± 1.4% 81.1± 1.5% 52.7± 10.2%

RMSprop 69.4± 2.9% 72.8± 2.3% 61.1± 8.9%
ConvergentL2O 87.0 ± 0.5% 86.8 ± 0.6% 86.3± 0.6%

LSTM 82.2± 0.1% 83.3± 0.1% 88.3 ± 0.0%

Step t = 300 tanh sigmoid ReLU
Adam 89.5 ± 0.5% 89.6 ± 0.3% 70.3± 12.2%
SGD 87.4± 0.4% 89.3± 0.3% 80.6± 8.1%
NAG 89.4± 0.2% 89.4± 0.2% 82.2± 7.6%

RMSprop 87.6± 2.1% 88.5± 0.4% 81.5± 7.5%
ConvergentL2O 88.5± 0.2% 88.4± 0.3% 87.7± 0.2%

LSTM 81.4± 0.0% 81.4± 0.0% 88.3 ± 0.0%

the optimization landscape of the ReLU classif er, which may
proveparticularly challenging, ashighlighted in [13], due to its
structural differencewith respect to tanh in (18). Future work
will address the generalization of algorithms trained on the
MNIST dataset to different test datasets, e.g., Fashion-MNIST;
such generalization wasnot achieved using thecurrent shallow
classif er architecture (18).
To compare with alternative L2O approaches [13], we have

trained for 200 epochs a two-layer Long Short-Term Memory
(LSTM) optimizer ut = LSTM(xt ,∇f (xt ), f (xt )). As shown
in the table above, the LSTM optimizer achieves similar aver-
age test accuracy as our ConvergentL2O algorithm. Nonethe-
less, the LSTM output ut does not vanish with time, causing
theclassif er parameters to diverge7 – similar phenomenawere
also observed in [15]. None of our simulations exhibited such
divergence as per Theorem 2.

V. CONCLUSION
In this paper, we have introduced a methodology for learn-

ing over all convergent update rules for smooth non-convex op-
timization, thus enabling the automated synthesis of more re-
liable, eff cient, and reconf gurable algorithms. By synergizing
nonlinear system theory with the emerging L2O paradigm, we
aimed to close thegap between off ine, theory-based algorithm
design and adaptable, example-driven approaches that are the
hallmark of ML. Building on the proposed control-theoretic
perspective we have embraced, further avenues for future
research include certifying stronger convergence guarantees of

7We refer to https://github.com/andrea-martin/ConvergentL2O for the cor-
responding plots and the source code reproducing our numerical examples.

learned algorithms for convex optimization, analyzing gener-
alization capabilities, extending our framework to online and
constrained optimization scenarios, and federated learning.
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Experiment: training a perceptron for image classification
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(b) Activation function: sigmoid.
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(c) Activation function: ReLU.

Fig. 1. Training curves of learned and hand-crafted optimizers; shaded areas and solid lines denote standard deviations and mean values,
respectively.

Step t = 20 tanh sigmoid ReLU
Adam 71.7± 5.1% 76.1± 3.1% 52.7± 11.1%
SGD 44.9± 4.2% 79.7± 1.9% 49.8± 9.3%
NAG 79.7± 1.4% 81.1± 1.5% 52.7± 10.2%

RMSprop 69.4± 2.9% 72.8± 2.3% 61.1± 8.9%
ConvergentL2O 87.0 ± 0.5% 86.8 ± 0.6% 86.3± 0.6%

LSTM 82.2± 0.1% 83.3± 0.1% 88.3 ± 0.0%

Step t = 300 tanh sigmoid ReLU
Adam 89.5 ± 0.5% 89.6 ± 0.3% 70.3± 12.2%
SGD 87.4± 0.4% 89.3± 0.3% 80.6± 8.1%
NAG 89.4± 0.2% 89.4± 0.2% 82.2± 7.6%

RMSprop 87.6± 2.1% 88.5± 0.4% 81.5± 7.5%
ConvergentL2O 88.5± 0.2% 88.4± 0.3% 87.7± 0.2%

LSTM 81.4± 0.0% 81.4± 0.0% 88.3 ± 0.0%

the optimization landscape of the ReLU classif er, which may
proveparticularly challenging, ashighlighted in [13], due to its
structural differencewith respect to tanh in (18). Future work
will address the generalization of algorithms trained on the
MNIST dataset to different test datasets, e.g., Fashion-MNIST;
such generalization wasnot achieved using thecurrent shallow
classif er architecture (18).
To compare with alternative L2O approaches [13], we have

trained for 200 epochs a two-layer Long Short-Term Memory
(LSTM) optimizer ut = LSTM(xt ,∇f (xt ), f (xt )). As shown
in the table above, the LSTM optimizer achieves similar aver-
age test accuracy as our ConvergentL2O algorithm. Nonethe-
less, the LSTM output ut does not vanish with time, causing
theclassif er parameters to diverge7 – similar phenomenawere
also observed in [15]. None of our simulations exhibited such
divergence as per Theorem 2.

V. CONCLUSION
In this paper, we have introduced a methodology for learn-

ing over all convergent update rules for smooth non-convex op-
timization, thus enabling the automated synthesis of more re-
liable, eff cient, and reconf gurable algorithms. By synergizing
nonlinear system theory with the emerging L2O paradigm, we
aimed to close thegap between off ine, theory-based algorithm
design and adaptable, example-driven approaches that are the
hallmark of ML. Building on the proposed control-theoretic
perspective we have embraced, further avenues for future
research include certifying stronger convergence guarantees of

7We refer to https://github.com/andrea-martin/ConvergentL2O for the cor-
responding plots and the source code reproducing our numerical examples.

learned algorithms for convex optimization, analyzing gener-
alization capabilities, extending our framework to online and
constrained optimization scenarios, and federated learning.
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Conclusions

nonlinear control theorynonconvex optimization

NN control with embedded stability (Part 1)

design of convergent algorithms (Part 2)

Unified method 
Use NNs to design the closed-loop behavior directly… not to parametrize a policy
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Future work

▪ Develop a «new» RL based on learning over stable closed-loop maps, not over policies
▪ Lessons from AlphaZero[1]: online NMPC combined with learnt feedback policy

▪ Learning to optimize with linear/superlinear convergence guarantees
▪ Exploit monotone operator theory, e.g., strongly convex, PL, ADMM…

▪ Learning to optimize with constraints
▪ Formal transfer learning analysis[2]

[1] D. Bertsekas, Lessons from AlphaZero for optimal, model predictive, and adaptive control, Athena Scientific, 2022
[2] R. Sambharya, B. Stellato, “Data-Driven Performance Guarantees for Classical and Learned Optimizers”, [ArXiV, 2024]

Control

Optimization
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