Part 2

Learning to optimize with convergence guarantees
using nonlinear system theory

[1] Andrea Martin and Luca Furieri, “Learning to optimize with convergence guarantees using nonlinear system theory”,
IEEE LCSS, 2024
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Algorithm design

Iterative optimization algorithm
Tts1 = ¢ +update, (f, z1) 1. Convergence as ¢ — oo

Non-convex program Algorithm requirements:

r* = argmin, cpa f(2)

2. Speed: find stationary point in few steps

3. Quality: find low-cost stationary point

Learning-based design

Analytic design
Problem Class )Formal ggarantees\/ : - \ / == \ - ( \
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Background: system theory for algorithm design

Classical optimization algorithms (gradient descent, accelerated...) as Lure’s systems

uncertain plant

e 1 Tiyl = Tt — nvf(mt)
: yr = VI () Example: I
[ I A| B Ii | —nI
Ti41 = Azy + B _ | 4d | —Md
t+1 t Yt , [CD] [Id|0d]
Ut = CCBt )‘

linear controller with memory

[1] Lessard, Recht, Packard, “Analysis and design of optimization algorithms via integral quadratic constraints”, SIAM Journal on Optimization, 2016
[2] Scherer, C., & Ebenbauer, C. «Convex synthesis of accelerated gradient algorithmsy». SIAM Journal on Control and Optimization, 59(6), 4615-4645, 2021
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Background: system theory for algorithm design

Classical optimization algorithms (gradient descent, accelerated...) as Lure’s systems

uncertain plant = Design of new algorithms, i.e., matrices (A,B,C)...
[ | = ...leveraging IQCs and robust control theoryl'[2]
| = Vi) bl oo

From Dissipativity to the Design
of Controllers for Optimization

7

Ty+1 = Axy + By,

A

——
E Wednesday, December 18, 8:30-9:30

Ut = C.Tt

J

Carsten Scherer

linear controller with memory oz | QY o matorum
A E

Optimal worst-case convergence rates Q Limited to convex objective functions

[1] Lessard, Recht, Packard, “Analysis and design of optimization algorithms via integral quadratic constraints”, SIAM Journal on Optimization, 2016
[2] Scherer, C., & Ebenbauer, C. «Convex synthesis of accelerated gradient algorithmsy». SIAM Journal on Control and Optimization, 59(6), 4615-4645, 2021
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Background: machine learning for algorithm design

OCO0ODbD

SoODDD
WY

Q000
a [o!
aqaaq C

Idea: let a neural network guide the algorithm updates —— i1 = T+

promotes convergence

r

Train parameters # to minimize E . r Za,”Vf(:nt)llz +'ytf(a:t)

I()’VX() t=0

class of example MetaLoss(f,x) \ I
problems of interest

promotes solution quality

Q Empirical performance and generalization Q Lack of formal guarantees

[1] Andrychowicz, M., ... & De Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. Advances in neural information processing systems
[2] Li, K., & Malik, J. Learning to optimize. International Conference on Leaming Representations, 2016
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Background: machine learning for algorithm design

Idea: let a neural network guide the algorithm updates —— i1 =zt = 9

»convergence

g focus
Train paramete Today =" )

¢ |earned updates:-

class explo oit ﬂeX\b\\\ty 0

proble
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Problem formulation

Design of optimal convergent algorithms

Let Sz denote the class of non-convex functions with BLipschitz gradients:

x = (zo,z1,T2,...)

min E s.r [MetaLoss(f,x)]

™ zo~AXo

subject to zi41 = ¢ + me(f, Te:0) Algorithm

7(f,x) converges Vf € Sg, ~—" dynamics

n(f,x) € €2, Vf(x) € l.’;g,<—J
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Problem formulation

Design of optimal convergent algorithms

Let Sz denote the class of non-convex functions with BLipschitz gradients:

<_———~ x = (zo,z1,T2,...)

min E s.r [MetaLoss(f,x)]

™ zo~Xo

subject to zi41 = ¢ + me(f, Te:0) Algorithm

7(f,x) converges Vf € Sg, ~—" dynamics
\

-~

Example: the gradient descent algorithm 7 (f,x) = —nVf(x) converges Vf € Sz if 0 <np < 8!

[1] Bertsekas, D. P., & Tsitsiklis, J. N. «Gradient convergence in gradient methods with errors. SIAM Joumal on Optimization», 10(3), 627-642, 2000
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Main result 1: a separation principle for algorithms

Consider the algorithm: (£, x) = =nVf(x) + v enhancement term to be designed

.__) L_/' without ruining convergence

gradient descent
ensures convergence

If 0 <n<B !, m(f,x) converges Vf € Sz forany v € £,

Q Needs proof: exponential stability with v = 0 generally does not imply stability when v & £,

[1 ]Khalil, H. K. (2002). Nonlinear systems.
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Main result 2: completeness

Take any =« (f, x) that converges Vf € Sg:

There exist V € £, such that —nVf(x) + V(f, zo) and

w(f,x) yield the same trajectories Vzo, Vf € Sg

Proof insight: design a stable closed-loop map, rather than an update rule

(X, Up, Yr)

[

(X U, ) —
Equivalence of (f’x°)>E mU Y and Lm0 t = oE Ty

e = VIl(xe)

Ly

V

by picking V(f, 1‘0) = an(x,r(l‘())) + u.,,(:rg) .

Luca Furieri Learning to control and optimize

»

University of California San Diego, 12 February 2025 45



Implications

Learning convergent algorithms using automatic differentiation

nirin E j~r [MetaLoss(f, ) min E [MetaLoss( f, x)]
mot VeLs o, |

subject t =T+ L0/ i
subject to z¢41 = x¢ + me(f, Te0) Subject to x4yy =z, — nVf(zy) + Vi(f, z0) ,
m(f,x) converges Vf € Sz,

how to search over these operators?
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Implications

Learning convergent algorithms using automatic differentiation

min E ;. r [MetaLoss(f,x)]
T zo~Xo min E InF [MetaLoss(f, x)]
subject to x¢i1 = ¢ + e (f, Tt0) 9ER™  zpnXy
subject to z,,; = z; — nVf(z,) + Vi(f, z0,0),

7 (f,x) converges Vf € Sz,

Q Unconstrained parametrizations of £, operators (Part 1) + < ) PyTOI’Ch
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Implications

Learning convergent algorithms using autorm-~+*- """ 1
ive L20:
r effective
min Challen es fo d * e R>is hard...
. o R Y
ing the Mmap .

subjec ralization: learning gient information

1. | with P o)

‘N( 0 hoW to dea
\mplementation-
2.

Unconstrained parametrizations of £, operators (Part 1) + < ) PyTOFCh
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Main result 2 *: learning with input features

min E ;. r [MetaLoss(f,x)]
gcRkn To~Xo

subject to z,; = z; — nVf(z,) + Vi(f, 20, 0),
(___—~ replace with r¢(zo, 8)di(z+.0, f(2t0), Vf(Zt0), 0)

( unit direction vector

¢5 radius vector
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Main result 2 *: learning with input features

min E ;. r [MetaLoss(f,x)]
OER™  ryn X,

subject to z,,1 = T — NV () + Vi(f, Z0, ), (v unit direction vector

(___. replace with r(z0, 8)d:(ze0, f(220), Vf (ze0), 0)

Q‘ {5 radius vector

...preserves one-to-one parametrization!

" Proof of sufficiency: by construction

= Proof of necessity: reduces to the previous case by writing Vi(f, zo)in polar coordinates
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Main result 3: the case of gradients with errors

Typical scenario in machine learning: f(z) = Z fi(z) — access to Vf;(z) only
1Ebatches

If €4y and ||vell € mel|Vie(ze)| , me(ze) = —neVfe(ze) + ve converges asymptotically
/

k» instantaneous bounds —— sufficient condition consistent with SGD

Q Compatibility with machine learning tasks with batch data
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Experiment: training a perceptron for image classification

Training of the learned algorithm

classifier initial weights distribution

0000000000000 000
(VNN L7 70NN

2222432222123 222 - s P
33338333353>3333333 = = (ﬂaSS"ﬁer
ddta ahd 1abels; % < i

g = >

bCbbLbbLbSGLEGEGL “ © preCth")n
¥777711790122777

A NP W I R KA

799993%9290493449939

train the classifier with the update
ﬂ't(fw 1‘::0) = _7IV<) + ":(xoe o)d! (Iz;m f(l'tzo), vf(l'tzo),- 0)

4/ current algorithm

classifier training loss parameters
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Experiment: training a perceptron for image classification

Training of the learned algorithm

classifier initial weights distribution

000000600 p0O0Y 000 o)

CVANVZ 2070 LN/ A= A

2222232222122 222 Q v

3333332353>3333333 o ianmc ClaSSIflel"

ddta ahd 1abels: e = ' T
5 2 I =

g g prediction

7797171790122 777 o s

¥3 7% 88%PFBPIYTILCL D

?2499999%94%49944919 9

train the classifier with the update
"t(f~ 1’!:(1) = _"lvf(lrr) + "z(l’ue e)dt (ILO- f(l’t;u)a Vf(l’zzo)s 9)

After training the classifier, we get one evaluation of MetaLoss(f,x,#) ...
...repeat several times to approximate E ;. r [MetaLoss(f,x,#)], then update &

170~Xo
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Experiment: training a perceptron for image classification

Testing of the learned algorithm: f is kept frozen

06000000p0000s 000 3 p
AN R AR AN RVAY RN RN A VA )

222232222122 222%

S FIRBERICOREHEIEREE : ianfﬁ = classifier
data ahd 1abels: — v Y - rediction
bCbbLobLbbEbE6EGL O =0 predaictio
7797171790122 777 o s

¥3 7% 88%PFBPIYTILCL D

?2499999%94%49944919 9

train the classifier with the update
ﬂ':(f, 1’1:0) = _"VI(It) + "t(l’ue B)dt (1':40- f(l’tzu)s Vf(l’zzo)s 0)

final algorithm parameters

Compare training curves f(x) with fine-tuned classical optimizers
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Experiment: training a perceptron for image classification

Testing of the learned algorithm: f is kept frozen

00000000 p0000 000 Q 0
(VNN 2020 LN =AY

2J21J32;L2131111 tanrﬂiﬂgnngudlyehj o
3333333333333333 e classifier
eaeeu?ebs!ég%%éz S h =" pFECthH)n
$777771%1790712%777

Y3 7988 P 78 PTTIEL D

?999499%9494344999

train the classifier with the update
‘Tt(f~ 1’(:(1) = _"]VI(I() + r:(l’ue e)dt(' t:05 f(l’fza)s Vf(l’z;o)s 9)

what about generalization?

Compare training curves f(x) with fine-tuned classical optimizers
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Experiment: training a perceptron for image classification

Activation function: tanh

25 —— Adam —— NAG —— ConvergentL20

Classifier
training °
cu rvei)
0
f ($t) 0 20 40 60 80 100
Optimization steps
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Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu

—— Adam —— NAG —— ConvergentL20

25 —— Adam —— NAG —— ConvergentL20 —— Adam —— NAG —— ConvergentL20
! —— SGD —_ —— SGD -
1.6
ege 10 | RS A /el
Classifier

Loss

T T
280 290 300

Loss

T T
280 290 300

training °

curves
4]
f(fl’:t) 0 20 40 60 80 100 0 20 40 60 80 100 0 2'0 4'0 60 80 100
Optimization steps Optimization steps Optimization steps
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Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu

—— Adam  —— NAG — ConvergentL20 —— Adam —— NAG —— ConvergentL20 —— Adam  — NAG —— ConvergentL20
—— S6D  —— RMSprop 22 ——SeD  — Ruspop
. !
age AR
Classifier ) .
trai ning 38 3 280 290 300 §
curves
/ 16
f(ili‘ t) 0 20 40 60 80 100 20 40 60 80 100 0 20 40 60 80 100
Optimization steps Optimization steps Optimization steps
transient performanm
Step t = 20 tanh sigmoid RelLU
Adam 71.7 £51% 76.1 £3.1% 52.7 £11.1%
SGD 44.9 +£4.2% 79.7 £1.9% 49.8 +9.3%
NAG 79.7 £1.4% 81.1 £1.5% 52.7 £10.2%
' RM Sprop 69.4 +2.9% 72.8 +2.3% 61.1 £8.9%
Classifier ConvergentL20 | 87.0 #0.5% 86.8 #0.6%  86.3 #0.6%
test LSTM 82.2 +£0.1% 83.3 £0.1% 88.3 £0.0%
Step £ = 300 tanh sigmoid ReLU
accuracy Adam 89.5 £0.5% 89.6 £0.3% 70.3 £12.2%
SGD 87.4 +0.4% 89.3 £0.3% 80.6 £8.1%
NAG 89.4 £0.2% 89.4 £0.2% 82.2 £7.6%
RM Sprop 87.6 £2.1% 88.5 £ 0.4% 81.5 £7.5%
ConvergentL20) | 88.5 #0.2% 88.4 £0.3% 87.7 £0.2%
LSTM 81.4 +£0.0% 81.4 £0.0% 88.3 £0.0%
performance upon —
convergence
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Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu
—— Adam  —— NAG — ConvergentL20 —— Adam —— NAG —— ConvergentL20 —— Adam  — NAG —— ConvergentL20
—— SGD —_— prop 29 —— SGD —_— prop 16
.gn AR
Classifier ) .
. . ? @ . . @
tralnlng S 3 280 290 300 S
curves
/ 1.6
f(:li‘ t) 0 2'0 4'0 6'0 8'0 100 2'0 4'0 6'0 8'0 100 0 2'0 4'0 6'0 8'0 100
Optimization steps Optimization steps Optimization steps
transient performanm
Step t = 20 tanh sigmoid ReLU a = A
Adam 717 £651% 761 23.1% 52.7 Z11.1% X -
SGD 44.9 £42% 797 £1.9%  49.8 £9.3% Q ~Q o
NAG 79.7 £1.4% 811 £15% 527 £10.2% — — f( ) ot ~a o
. RMSprop 69.4 £2.9%  72.8 £2.3%  61.1 £8.9% o~ T4l It 77V Tt + > = ) &
Classifier ConvergentL20 | 87.0 #0.5% 86.8 #0.6%  86.3 #0.6% o St 5
test LSTM 822 +0.1% 833 70.1% 88.3 £0.0% N\ o
Step t = 300 tanh sigmoid ReLU d o)
accuracy Adam 895 705% 89.6 £0.3% 70.3 £12.2% o
SGD 87.4 +0.4% 893 +03%  80.6 £8.1% o
NAG 89.4 £0.2%  89.4 £02% 822 £7.6% X
RMSprop 87.6 £21% 88.5+04% 815 £7.5% X PSS
ConvergentL20| | 88.5 #0.2%  88.4 £0.3%  87.7 £0.2% — a O
LSTM 81.4 #0.0% 814 £0.0% 88.3 #0.0% Tiy1 = $t+ o o=
g o= 0
performance upon — N\
o)

convergence
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Experiment: training a perceptron for image classification

Activation function: tanh

Activation function: sigmoid Activation function: relu

—— Adam  —— NAG — ConvergentL20 —— Adam —— NAG —— ConvergentL20 —— Adam  — NAG —— ConvergentL20
—— SGD  —— RMSprop —— SGD  —— RMSprop 3.0
2.2 1.6
Classifier
.. 3 2 3
training ° 3 3
curves
/ 1.6
f (xt) 0 20 40 60 80 100 2'0 4'0 6'0 8'0 100 2'0 4'0 6'0 8'0 100
Optimization steps Optimization steps Optimization steps
t Without guarantees
transient erformanm i
p Step £ = 20 tanh . id ReLU Average norm of classifier parameters over iterations Iearn ed optl mlzers
ept= an sigmoi el - - =
Adam 717 251% 764 23.1% 527 Z11.1% 100 o e o ///‘ diverge!
SGD 44.9 +£4.2% 79.7 £1.9% 49.8 +£9.3% —— Norm of weights (ConvergentL20)
NAG 79.7 +1.4% 81.1 #1.5% 52.7 +10.2% —— Norm of biases {(ConvergentL20)
agm RMSprop 69.4 £2.9% 72.8 £2.3% 61.1 £8.9% 1071
Classifier ConvergentL20 | 87.0 #0.5% 86.8 #0.6%  86.3 #0.6%
LSTM 82.2 £0.1% 83.3 £0.1% 88.3 £0.0%
test g 10
Step t = 300 tanh sigmoid ReLU S
accuracy Adam 89.5 #0.5% 89.6 #0.3% 70.3 £12.2% -
SGD 87.4 £0.4% 89.3 £0.3% 80.6 £8.1% 10-3
NAG 89.4 £0.2% 89.4 +0.2% 82.2 £7.6%
RM Sprop 87.6 £2.1% 88.5 £0.4% 81.5 £7.5%
ConvergentL20) | 88.5 #0.2% 88.4 £0.3% 87.7 £0.2% 10-4
LSTM 81.4+0.0% 81.440.0% 88.3 £0.0% L
pe r'formance upon A/ 0 50 100 150 200 250 300
Iteration
convergence
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Conclusions

NN control with embedded stability (Part 1)

>

nonconvex optimization nonlinear control theory

N S

design of convergent algorithms (Part 2)

Unified method
Use NNs to design the closed-loop behavior directly... not to parametrize a policy
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Future work

Control
= Develop a «new» RL based on learning over stable closed-loop maps, not over policies

= Lessons from AlphaZerol': online NMPC combined with leamt feedback policy

Optimization

= Learning to optimize with linear/superlinear convergence guarantees

= Exploit monotone operator theory, e.g., strongly convex, PL, ADMM...

= Learning to optimize with constraints N-1
) ) u*(ry) = argmin Zﬁ(a:k,uk)—l—ﬁf (zn)
= Formal transfer learning analysis!?! UoseenUN -1 T

subject to xg = x4, Tp41 = g (Tk, u)
rr €EX, up €U, QZNEXf

[1] D. Bertsekas, Lessons from AlphaZero for optimal, model predictive, and adaptive control, Athena Scientific, 2022

[2] R. Sambharya, B. Stellato, “Data-Driven Performance Guarantees for Classical and Learned Optimizers’, [ArXiV, 2024]
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