Part 2

Learning to optimize with convergence guarantees using nonlinear system theory

[1] Andrea Martin and Luca Furieri, "Learning to optimize with convergence guarantees using nonlinear system theory", IEEE LCSS, 2024

Luca Furieri

Learning to control and optimize

Algorithm design

Non-convex program

$c^{\star} = \operatorname{argmin}_{x \in \mathbb{R}^d} f(x)$

Iterative optimization algorithm

 $x_{t+1} = x_t + \text{update}_t(f, x_t)$

Algorithm requirements:

- **1.** Convergence as $t \to \infty$
- 2. Speed: find stationary point in few steps
- **3. Quality**: find low-cost stationary point

Background: system theory for algorithm design

Classical optimization algorithms (gradient descent, accelerated...) as Lure's systems

linear controller with memory

[1] Lessard, Recht, Packard, "Analysis and design of optimization algorithms via integral quadratic constraints", SIAM Journal on Optimization, 2016

[2] Scherer, C., & Ebenbauer, C. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 4615-4645, 2021

Luca Furieri

Background: system theory for algorithm design

Classical optimization algorithms (gradient descent, accelerated...) as Lure's systems

linear controller with memory

Optimal worst-case convergence rates

- Design of new algorithms, i.e., matrices (A,B,C)...
 - ...leveraging IQCs and robust control theory^{[1],[2]}

Lessard, Recht, Packard, "Analysis and design of optimization algorithms via integral quadratic constraints", SIAM Journal on Optimization, 2016
 Scherer, C., & Ebenbauer, C. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 4615-4645, 2021

Background: machine learning for algorithm design

Idea: let a neural network guide the algorithm updates $\longrightarrow x_{t+1} = x_t + x_t$

Empirical performance and generalization

[1] Andrychowicz, M., ... & De Freitas, N. (2016). *Learning to learn by gradient descent by gradient descent*. Advances in neural information processing systems [2] Li, K., & Malik, J. *Learning to optimize*. International Conference on Learning Representations, 2016

Learning to control and optimize

Background: machine learning for algorithm design

Idea: let a neural network guide the algorithm updates $\longrightarrow x_{t+1} = x_t + \frac{1}{2}$

Problem formulation

Design of optimal convergent algorithms

Let S_{β} denote the class of non-convex functions with β Lipschitz gradients:

Problem formulation

Design of optimal convergent algorithms

Let S_{β} denote the class of non-convex functions with β Lipschitz gradients:

Example: the gradient descent algorithm $\pi(f, \mathbf{x}) = -\eta \nabla f(\mathbf{x})$ converges $\forall f \in S_{\beta}$ if $0 < \eta < \beta^{-1}$

[1] Bertsekas, D. P., & Tsitsiklis, J. N. «Gradient convergence in gradient methods with errors. SIAM Journal on Optimization», 10(3), 627-642, 2000

Main result 1: a separation principle for algorithms

If
$$0 < \eta < \beta^{-1}$$
, $\pi(f, \mathbf{x})$ converges $\forall f \in S_{\beta}$ for any $\mathbf{v} \in \ell_2$

Needs proof: exponential stability with $\mathbf{v} = 0$ generally does not imply stability when $\mathbf{v} \in \ell_2^{[1]}$

[1]Khalil, H. K. (2002). Nonlinear systems.

Luca Furieri

Main result 2: completeness

Take any $\pi(f, \mathbf{x})$ that converges $\forall f \in S_{\beta}$:

There exist $\mathbf{V} \in \mathcal{L}_2$ such that $-\eta \nabla f(\mathbf{x}) + \mathbf{V}(f, x_0)$ and

 $\pi(f, \mathbf{x})$ yield the same trajectories $\forall x_0, \forall f \in S_\beta$

Proof insight: design a stable closed-loop map, rather than an update rule

by picking $\mathbf{V}(f, x_0) = \eta \nabla f(\mathbf{x}_{\pi}(x_0)) + \mathbf{u}_{\pi}(x_0)$.

Implications

Learning convergent algorithms using automatic differentiation

$$\begin{split} & \min_{\boldsymbol{\pi}} \mathbb{E}_{\substack{f \sim \mathcal{F} \\ x_0 \sim \mathcal{X}_0}} [\text{MetaLoss}(f, \mathbf{x})] \\ & \text{subject to } x_{t+1} = x_t + \pi_t(f, x_{t:0}) , \\ & \boldsymbol{\pi}(f, \mathbf{x}) \text{ converges } \forall f \in \mathcal{S}_\beta , \end{split} \\ & \textbf{min} \mathbb{E}_{\substack{f \sim \mathcal{F} \\ x_0 \sim \mathcal{X}_0}} [\text{MetaLoss}(f, \mathbf{x})] \\ & \text{subject to } x_{t+1} = x_t - \eta \nabla f(x_t) + V_t(f, x_0) , \\ & \text{subject to } x_{t+1} = x_t - \eta \nabla f(x_t) + V_t(f, x_0) , \end{aligned}$$

Implications

Learning convergent algorithms using automatic differentiation

$$\begin{split} & \min_{\boldsymbol{\theta} \in \mathbb{R}^n} \ \mathbb{E}_{\substack{f \sim \mathcal{F} \\ x_0 \sim \mathcal{X}_0}} \left[\texttt{MetaLoss}(f, \mathbf{x}) \right] \\ & \text{subject to} \ x_{t+1} = x_t - \eta \nabla f(x_t) + V_t(f, x_0, \boldsymbol{\theta}) \,, \end{split}$$

Sunconstrained parametrizations of
$$\mathcal{L}_2$$
 operators (**Part 1**) + OPyTorch

Implications

Main result 2*: learning with input features

Main result 2 *: learning with input features

- Proof of sufficiency: by construction
- Proof of necessity: reduces to the previous case by writing $V_t(f, x_0)$ in polar coordinates

Main result 3: the case of gradients with errors

Typical scenario in machine learning: $f(x) = \sum_{i \in \text{batches}} f_i(x) \longrightarrow \text{access to } \nabla f_i(x) \text{ only}$

If $\eta \in \ell_2$ and $\|v_t\| \le \eta_t \|\nabla f_t(x_t)\|$, $\pi_t(x_t) = -\eta_t \nabla f_t(x_t) + v_t$ converges asymptotically instantaneous bounds \longrightarrow sufficient condition consistent with SGD

After training the classifier, we get one evaluation of MetaLoss (f, \mathbf{x}, θ) ...

...repeat several times to approximate $\mathbb{E}_{\substack{f \sim \mathcal{F} \\ x_0 \sim \mathcal{X}_0}}$ [MetaLoss (f, \mathbf{x}, θ)], then update θ

Compare training curves $f(\mathbf{x})$ with fine-tuned classical optimizers

Testing of the learned algorithm: θ is kept frozen

Compare training curves $f(\mathbf{x})$ with fine-tuned classical optimizers

Conclusions

Unified method

Use NNs to design the closed-loop behavior directly... not to parametrize a policy

Future work

Control

- Develop a «new» RL based on learning over stable closed-loop maps, not over policies
- Lessons from AlphaZero^[1]: online NMPC combined with learnt feedback policy

Optimization

- Learning to optimize with *linear/superlinear* convergence guarantees
 - Exploit monotone operator theory, e.g., strongly convex, PL, ADMM...
- Learning to optimize with constraints
 Formal transfer learning analysis^[2]
 u^{*}(x_t) = arg min <sub>u₀,...,u_{N-1} ∑_{k=0}^{N-1} ℓ(x_k, u_k) + ℓ_f(x_N)
 subject to x₀ = x_t, x_{k+1} = g(x_k, u_k)
 x_k ∈ X, u_k ∈ U, x_N ∈ X_f
 </sub>

[1] D. Bertsekas, Lessons from AlphaZero for optimal, model predictive, and adaptive control, Athena Scientific, 2022

[2] R. Sambharya, B. Stellato, "Data-Driven Performance Guarantees for Classical and Learned Optimizers", [ArXiV, 2024]

