Part 2

Learning to optimize with convergence guarantees
using nonlinear system theory

[1] Andrea Martin and Luca Furieri, “Learning to optimize with convergence guarantees using nonlinear system theory”,
IEEE LCSS, 2024

University of California San Diego, 12 February 2025 36

Algorithm design

Iterative optimization algorithm
Tts1 = ¢ +update, (f, z1) 1. Convergence as ¢ — oo

Non-convex program Algorithm requirements:

r* = argmin, cpa f(2)

2. Speed: find stationary point in few steps

3. Quality: find low-cost stationary point

Learning-based design

Analytic design
Problem Class)Formal ggarantees\/ : - \ / == \ - (\
S| [etnedaorion Gy WO LK [[Fy—
D ol XU E
H algorithm :

Y

(e.g., convex, PL...U

Y :
A

<-| Example < E
Optimization Problems|[\| || | "] xample [k <~ o
P (from the Class) problems Optimization Problems
(new, unseen)

\= = |\ Y, S

University of California San Diego, 12 February 2025

37

Learning to control and optimize

Luca Furieri

Background: system theory for algorithm design

Classical optimization algorithms (gradient descent, accelerated...) as Lure’s systems

uncertain plant

e 1 Tiyl = Tt — nvf(mt)
: yr = VI () Example: I
[I A| B Ii | —nI
Ti41 = Azy + B _ | 4d | —Md
t+1 t Yt , [CD] [Id|0d]
Ut = CCBt)‘

linear controller with memory

[1] Lessard, Recht, Packard, “Analysis and design of optimization algorithms via integral quadratic constraints”, SIAM Journal on Optimization, 2016
[2] Scherer, C., & Ebenbauer, C. «Convex synthesis of accelerated gradient algorithmsy». SIAM Journal on Control and Optimization, 59(6), 4615-4645, 2021

Luca Furieri Learning to control and optimize University of California San Diego, 12 February 2025 38

Background: system theory for algorithm design

Classical optimization algorithms (gradient descent, accelerated...) as Lure’s systems

uncertain plant = Design of new algorithms, i.e., matrices (A,B,C)...
[| = ...leveraging IQCs and robust control theoryl'[2]
| = Vi) bl oo

From Dissipativity to the Design
of Controllers for Optimization

7

Ty+1 = Axy + By,

A

——
E Wednesday, December 18, 8:30-9:30

Ut = C.Tt

J

Carsten Scherer

linear controller with memory oz | QY o matorum
A E

Optimal worst-case convergence rates Q Limited to convex objective functions

[1] Lessard, Recht, Packard, “Analysis and design of optimization algorithms via integral quadratic constraints”, SIAM Journal on Optimization, 2016
[2] Scherer, C., & Ebenbauer, C. «Convex synthesis of accelerated gradient algorithmsy». SIAM Journal on Control and Optimization, 59(6), 4615-4645, 2021

Luca Furieri Learning to control and oy

University of California San Diego, 12 February 2025 39

Background: machine learning for algorithm design

OCO0ODbD

SoODDD
WY

Q000
a [o!
aqaaq C

Idea: let a neural network guide the algorithm updates —— i1 = T+

promotes convergence

r

Train parameters # to minimize E . r Za,”Vf(:nt)llz +'ytf(a:t)

I()’VX() t=0

class of example MetaLoss(f,x) \ I
problems of interest

promotes solution quality

Q Empirical performance and generalization Q Lack of formal guarantees

[1] Andrychowicz, M., ... & De Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. Advances in neural information processing systems
[2] Li, K., & Malik, J. Learning to optimize. International Conference on Leaming Representations, 2016

Luca Furieri Learning to control and optimize versity of California San Diego, 12 February 2025

40

Background: machine learning for algorithm design

Idea: let a neural network guide the algorithm updates —— i1 =zt = 9

»convergence

g focus
Train paramete Today =")

¢ |earned updates:-

class explo oit ﬂeX\b\\\ty 0

proble

Luca Furieri Learning to control and optimize University of California San Diego, 12 February 2025 41

Problem formulation

Design of optimal convergent algorithms

Let Sz denote the class of non-convex functions with BLipschitz gradients:

x = (zo,z1,T2,...)

min E s.r [MetaLoss(f,x)]

™ zo~AXo

subject to zi41 = ¢ + me(f, Te:0) Algorithm

7(f,x) converges Vf € Sg, ~—" dynamics

n(f,x) € €2, Vf(x) € l.’;g,<—J

Luca Furieri Learning to control and optimize a San Diego, 12 February 2025 42

Problem formulation

Design of optimal convergent algorithms

Let Sz denote the class of non-convex functions with BLipschitz gradients:

<_———~ x = (zo,z1,T2,...)

min E s.r [MetaLoss(f,x)]

™ zo~Xo

subject to zi41 = ¢ + me(f, Te:0) Algorithm

7(f,x) converges Vf € Sg, ~—" dynamics
\

-~

Example: the gradient descent algorithm 7 (f,x) = —nVf(x) converges Vf € Sz if 0 <np < 8!

[1] Bertsekas, D. P., & Tsitsiklis, J. N. «Gradient convergence in gradient methods with errors. SIAM Joumal on Optimization», 10(3), 627-642, 2000

Luca Furieri Learning to control and optimize niversity of California San Diego, 12 February 2025 43

Main result 1: a separation principle for algorithms

Consider the algorithm: (£, x) = =nVf(x) + v enhancement term to be designed

.__) L_/' without ruining convergence

gradient descent
ensures convergence

If 0 <n<B !, m(f,x) converges Vf € Sz forany v € £,

Q Needs proof: exponential stability with v = 0 generally does not imply stability when v & £,

[1]Khalil, H. K. (2002). Nonlinear systems.

Luca Furieri Learning to control and optimize 0, 12 February 2025 44

Main result 2: completeness

Take any =« (f, x) that converges Vf € Sg:

There exist V € £, such that —nVf(x) + V(f, zo) and

w(f,x) yield the same trajectories Vzo, Vf € Sg

Proof insight: design a stable closed-loop map, rather than an update rule

(X, Up, Yr)

[

(X U,) —
Equivalence of (f’x°)>E mU Y and Lm0 t = oE Ty

e = VIl(xe)

Ly

V

by picking V(f, 1‘0) = an(x,r(l‘())) + u.,,(:rg) .

Luca Furieri Learning to control and optimize

»

University of California San Diego, 12 February 2025 45

Implications

Learning convergent algorithms using automatic differentiation

nirin E j~r [MetaLoss(f,) min E [MetaLoss(f, x)]
mot VeLs o, |

subject t =T+ L0/ i
subject to z¢41 = x¢ + me(f, Te0) Subject to x4yy =z, — nVf(zy) + Vi(f, z0) ,
m(f,x) converges Vf € Sz,

how to search over these operators?

Luca Furieri Learning to control and optimize D

iego, 12 February 2025 46

Implications

Learning convergent algorithms using automatic differentiation

min E ;. r [MetaLoss(f,x)]
T zo~Xo min E InF [MetaLoss(f, x)]
subject to x¢i1 = ¢ + e (f, Tt0) 9ER™ zpnXy
subject to z,,; = z; — nVf(z,) + Vi(f, z0,0),

7 (f,x) converges Vf € Sz,

Q Unconstrained parametrizations of £, operators (Part 1) + <) PyTOI’Ch

Luca Furieri Learning to control and optimize sity of California San Diego, 12 February 2025 47

Implications

Learning convergent algorithms using autorm-~+*- """ 1
ive L20:
r effective
min Challen es fo d * e R>is hard...
. o R Y
ing the Mmap .

subjec ralization: learning gient information

1. | with P o)

‘N(0 hoW to dea
\mplementation-
2.

Unconstrained parametrizations of £, operators (Part 1) + <) PyTOFCh

Luca Furieri Learning to control and optimi

University of California San Diego, 12 February 2025 48

Main result 2 *: learning with input features

min E ;. r [MetaLoss(f,x)]
gcRkn To~Xo

subject to z,; = z; — nVf(z,) + Vi(f, 20, 0),
(___—~ replace with r¢(zo, 8)di(z+.0, f(2t0), Vf(Zt0), 0)

(unit direction vector

¢5 radius vector

Luca Furieri Learning to control and optimize

Main result 2 *: learning with input features

min E ;. r [MetaLoss(f,x)]
OER™ ryn X,

subject to z,,1 = T — NV () + Vi(f, Z0,), (v unit direction vector

(___. replace with r(z0, 8)d:(ze0, f(220), Vf (ze0), 0)

Q‘ {5 radius vector

...preserves one-to-one parametrization!

" Proof of sufficiency: by construction

= Proof of necessity: reduces to the previous case by writing Vi(f, zo)in polar coordinates

Luca Furieri Learning to control and optimize nia San Diego, 12 February 2025 50

Main result 3: the case of gradients with errors

Typical scenario in machine learning: f(z) = Z fi(z) — access to Vf;(z) only
1Ebatches

If €4y and ||vell € mel|Vie(ze)| , me(ze) = —neVfe(ze) + ve converges asymptotically
/

k» instantaneous bounds —— sufficient condition consistent with SGD

Q Compatibility with machine learning tasks with batch data

Luca Furieri Learning to control and optimize 0, 12 February 2025 51

Experiment: training a perceptron for image classification

Training of the learned algorithm

classifier initial weights distribution

0000000000000 000
(VNN L7 70NN

2222432222123 222 - s P
33338333353>3333333 = = (ﬂaSS"ﬁer
ddta ahd 1abels; % < i

g = >

bCbbLbbLbSGLEGEGL “ © preCth")n
¥777711790122777

A NP W I R KA

799993%9290493449939

train the classifier with the update
ﬂ't(fw 1‘::0) = _7IV<) + ":(xoe o)d! (Iz;m f(l'tzo), vf(l'tzo),- 0)

4/ current algorithm

classifier training loss parameters

uary 2025 52

Learning to control and optimize

Luca Furieri

Experiment: training a perceptron for image classification

Training of the learned algorithm

classifier initial weights distribution

000000600 p0O0Y 000 o)

CVANVZ 2070 LN/ A= A

2222232222122 222 Q v

3333332353>3333333 o ianmc ClaSSIflel"

ddta ahd 1abels: e = ' T
5 2 I =

g g prediction

7797171790122 777 o s

¥3 7% 88%PFBPIYTILCL D

?2499999%94%49944919 9

train the classifier with the update
"t(f~ 1’!:(1) = _"lvf(lrr) + "z(l’ue e)dt (ILO- f(l’t;u)a Vf(l’zzo)s 9)

After training the classifier, we get one evaluation of MetaLoss(f,x,#) ...
...repeat several times to approximate E ;. r [MetaLoss(f,x,#)], then update &

170~Xo

Luca Furieri Learning to control and optimize sity of California San Diego, 12 February 2025 53

Experiment: training a perceptron for image classification

Testing of the learned algorithm: f is kept frozen

06000000p0000s 000 3 p
AN R AR AN RVAY RN RN A VA)

222232222122 222%

S FIRBERICOREHEIEREE : ianfﬁ = classifier
data ahd 1abels: — v Y - rediction
bCbbLobLbbEbE6EGL O =0 predaictio
7797171790122 777 o s

¥3 7% 88%PFBPIYTILCL D

?2499999%94%49944919 9

train the classifier with the update
ﬂ':(f, 1’1:0) = _"VI(It) + "t(l’ue B)dt (1':40- f(l’tzu)s Vf(l’zzo)s 0)

final algorithm parameters

Compare training curves f(x) with fine-tuned classical optimizers

Luca Furieri Learning to control and optimize California San Diego, 12 February 2025 54

Experiment: training a perceptron for image classification

Testing of the learned algorithm: f is kept frozen

00000000 p0000 000 Q 0
(VNN 2020 LN =AY

2J21J32;L2131111 tanrﬂiﬂgnngudlyehj o
3333333333333333 e classifier
eaeeu?ebs!ég%%éz S h =" pFECthH)n
$777771%1790712%777

Y3 7988 P 78 PTTIEL D

?999499%9494344999

train the classifier with the update
‘Tt(f~ 1’(:(1) = _"]VI(I() + r:(l’ue e)dt(' t:05 f(l’fza)s Vf(l’z;o)s 9)

what about generalization?

Compare training curves f(x) with fine-tuned classical optimizers

Luca Furieri Learning to control and optimize of California San Diego, 12 February 2025 55

Experiment: training a perceptron for image classification

Activation function: tanh

25 —— Adam —— NAG —— ConvergentL20

Classifier
training °
cu rvei)
0
f ($t) 0 20 40 60 80 100
Optimization steps

Luca Furieri Learning to control and optimize

Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu

—— Adam —— NAG —— ConvergentL20

25 —— Adam —— NAG —— ConvergentL20 —— Adam —— NAG —— ConvergentL20
! —— SGD —_ —— SGD -
1.6
ege 10 | RS A /el
Classifier

Loss

T T
280 290 300

Loss

T T
280 290 300

training °

curves
4]
f(fl’:t) 0 20 40 60 80 100 0 20 40 60 80 100 0 2'0 4'0 60 80 100
Optimization steps Optimization steps Optimization steps

Luca Furieri Learning to control and optimize

Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu

—— Adam —— NAG — ConvergentL20 —— Adam —— NAG —— ConvergentL20 —— Adam — NAG —— ConvergentL20
—— S6D —— RMSprop 22 ——SeD — Ruspop
. !
age AR
Classifier) .
trai ning 38 3 280 290 300 §
curves
/ 16
f(ili‘ t) 0 20 40 60 80 100 20 40 60 80 100 0 20 40 60 80 100
Optimization steps Optimization steps Optimization steps
transient performanm
Step t = 20 tanh sigmoid RelLU
Adam 71.7 £51% 76.1 £3.1% 52.7 £11.1%
SGD 44.9 +£4.2% 79.7 £1.9% 49.8 +9.3%
NAG 79.7 £1.4% 81.1 £1.5% 52.7 £10.2%
' RM Sprop 69.4 +2.9% 72.8 +2.3% 61.1 £8.9%
Classifier ConvergentL20 | 87.0 #0.5% 86.8 #0.6% 86.3 #0.6%
test LSTM 82.2 +£0.1% 83.3 £0.1% 88.3 £0.0%
Step £ = 300 tanh sigmoid ReLU
accuracy Adam 89.5 £0.5% 89.6 £0.3% 70.3 £12.2%
SGD 87.4 +0.4% 89.3 £0.3% 80.6 £8.1%
NAG 89.4 £0.2% 89.4 £0.2% 82.2 £7.6%
RM Sprop 87.6 £2.1% 88.5 £ 0.4% 81.5 £7.5%
ConvergentL20) | 88.5 #0.2% 88.4 £0.3% 87.7 £0.2%
LSTM 81.4 +£0.0% 81.4 £0.0% 88.3 £0.0%
performance upon —
convergence
Luca Furieri Learning to control and optimize Diego, 12 February 2025 58

Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu
—— Adam —— NAG — ConvergentL20 —— Adam —— NAG —— ConvergentL20 —— Adam — NAG —— ConvergentL20
—— SGD —_— prop 29 —— SGD —_— prop 16
.gn AR
Classifier) .
. . ? @ . . @
tralnlng S 3 280 290 300 S
curves
/ 1.6
f(:li‘ t) 0 2'0 4'0 6'0 8'0 100 2'0 4'0 6'0 8'0 100 0 2'0 4'0 6'0 8'0 100
Optimization steps Optimization steps Optimization steps
transient performanm
Step t = 20 tanh sigmoid ReLU a = A
Adam 717 £651% 761 23.1% 52.7 Z11.1% X -
SGD 44.9 £42% 797 £1.9% 49.8 £9.3% Q ~Q o
NAG 79.7 £1.4% 811 £15% 527 £10.2% — — f() ot ~a o
. RMSprop 69.4 £2.9% 72.8 £2.3% 61.1 £8.9% o~ T4l It 77V Tt + > =) &
Classifier ConvergentL20 | 87.0 #0.5% 86.8 #0.6% 86.3 #0.6% o St 5
test LSTM 822 +0.1% 833 70.1% 88.3 £0.0% N\ o
Step t = 300 tanh sigmoid ReLU d o)
accuracy Adam 895 705% 89.6 £0.3% 70.3 £12.2% o
SGD 87.4 +0.4% 893 +03% 80.6 £8.1% o
NAG 89.4 £0.2% 89.4 £02% 822 £7.6% X
RMSprop 87.6 £21% 88.5+04% 815 £7.5% X PSS
ConvergentL20| | 88.5 #0.2% 88.4 £0.3% 87.7 £0.2% — a O
LSTM 81.4 #0.0% 814 £0.0% 88.3 #0.0% Tiy1 = $t+ o o=
g o= 0
performance upon — N\
o)

convergence

Luca Furieri

Learning to control and optimize

iego, 12 February 2025 59

Experiment: training a perceptron for image classification

Activation function: tanh

Activation function: sigmoid Activation function: relu

—— Adam —— NAG — ConvergentL20 —— Adam —— NAG —— ConvergentL20 —— Adam — NAG —— ConvergentL20
—— SGD —— RMSprop —— SGD —— RMSprop 3.0
2.2 1.6
Classifier
.. 3 2 3
training ° 3 3
curves
/ 1.6
f (xt) 0 20 40 60 80 100 2'0 4'0 6'0 8'0 100 2'0 4'0 6'0 8'0 100
Optimization steps Optimization steps Optimization steps
t Without guarantees
transient erformanm i
p Step £ = 20 tanh . id ReLU Average norm of classifier parameters over iterations Iearn ed optl mlzers
ept= an sigmoi el - - =
Adam 717 251% 764 23.1% 527 Z11.1% 100 o e o ///‘ diverge!
SGD 44.9 +£4.2% 79.7 £1.9% 49.8 +£9.3% —— Norm of weights (ConvergentL20)
NAG 79.7 +1.4% 81.1 #1.5% 52.7 +10.2% —— Norm of biases {(ConvergentL20)
agm RMSprop 69.4 £2.9% 72.8 £2.3% 61.1 £8.9% 1071
Classifier ConvergentL20 | 87.0 #0.5% 86.8 #0.6% 86.3 #0.6%
LSTM 82.2 £0.1% 83.3 £0.1% 88.3 £0.0%
test g 10
Step t = 300 tanh sigmoid ReLU S
accuracy Adam 89.5 #0.5% 89.6 #0.3% 70.3 £12.2% -
SGD 87.4 £0.4% 89.3 £0.3% 80.6 £8.1% 10-3
NAG 89.4 £0.2% 89.4 +0.2% 82.2 £7.6%
RM Sprop 87.6 £2.1% 88.5 £0.4% 81.5 £7.5%
ConvergentL20) | 88.5 #0.2% 88.4 £0.3% 87.7 £0.2% 10-4
LSTM 81.4+0.0% 81.440.0% 88.3 £0.0% L
pe r'formance upon A/ 0 50 100 150 200 250 300
Iteration
convergence
Luca Furieri Learning to control and optimize a San Diego, 12 February 2025 60

Conclusions

NN control with embedded stability (Part 1)

>

nonconvex optimization nonlinear control theory

N S

design of convergent algorithms (Part 2)

Unified method
Use NNs to design the closed-loop behavior directly... not to parametrize a policy

Luca Furieri Learning to control and optimi University of California San Diego, 12 February 2025 61

Future work

Control
= Develop a «new» RL based on learning over stable closed-loop maps, not over policies

= Lessons from AlphaZerol': online NMPC combined with leamt feedback policy

Optimization

= Learning to optimize with linear/superlinear convergence guarantees

= Exploit monotone operator theory, e.g., strongly convex, PL, ADMM...

= Learning to optimize with constraints N-1
)) u*(ry) = argmin Zﬁ(a:k,uk)—l—ﬁf (zn)
= Formal transfer learning analysis!?! UoseenUN -1 T

subject to xg = x4, Tp41 = g (Tk, u)
rr €EX, up €U, QZNEXf

[1] D. Bertsekas, Lessons from AlphaZero for optimal, model predictive, and adaptive control, Athena Scientific, 2022

[2] R. Sambharya, B. Stellato, “Data-Driven Performance Guarantees for Classical and Learned Optimizers’, [ArXiV, 2024]

Luca Furieri Learning to control University of California San Diego, 12 February 2025 62

	Default Section
	Slide 1
	Slide 2: Neural network control
	Slide 3: Two challenges
	Slide 4
	Slide 5: Common scenario in engineering
	Slide 6: Performance boosting
	Slide 8: Setup and notation
	Slide 9: Setup and notation
	Slide 10: Setup and notation
	Slide 11: Setup and notation
	Slide 12: Setup and notation
	Slide 13: Setup and notation
	Slide 14: Parametrization of all nonlinear stabilizing controllers
	Slide 16: Next question…
	Slide 17: Models of stable operators
	Slide 18: Models of stable operators
	Slide 19: Recurrent Equilibrium Networks (RENs)[1,2]
	Slide 20: Deep learning formulation
	Slide 21: Deep learning formulation
	Slide 22: Numerical example: the corridor problem
	Slide 23: Numerical example: the corridor problem
	Slide 24: Numerical example: the corridor problem
	Slide 25: The power of the cost: lessons from RL
	Slide 26: The power of the cost: lessons from RL
	Slide 27: Waypoints tracking
	Slide 28: Numerical example: waypoints tracking
	Slide 29: Embedding safety
	Slide 30: Embedding safety
	Slide 31: Numerical example: the safe corridor problem
	Slide 32: Not in this talk: extensions
	Slide 35

	Learning to optimize
	Slide 36
	Slide 37: Algorithm design
	Slide 38: Background: system theory for algorithm design
	Slide 39: Background: system theory for algorithm design
	Slide 40: Background: machine learning for algorithm design
	Slide 41: Background: machine learning for algorithm design
	Slide 42: Problem formulation
	Slide 43: Problem formulation
	Slide 44: Main result 1: a separation principle for algorithms
	Slide 45: Main result 2: completeness
	Slide 46: Implications
	Slide 47: Implications
	Slide 48: Implications
	Slide 49: Main result 2 ★: learning with input features
	Slide 50: Main result 2 ★: learning with input features
	Slide 51: Main result 3: the case of gradients with errors
	Slide 52: Experiment: training a perceptron for image classification
	Slide 53: Experiment: training a perceptron for image classification
	Slide 54: Experiment: training a perceptron for image classification
	Slide 55: Experiment: training a perceptron for image classification
	Slide 56: Experiment: training a perceptron for image classification
	Slide 57: Experiment: training a perceptron for image classification
	Slide 58: Experiment: training a perceptron for image classification
	Slide 59: Experiment: training a perceptron for image classification
	Slide 60: Experiment: training a perceptron for image classification
	Slide 61: Conclusions
	Slide 62: Future work

