Closing the loop between optimal nonlinear control
and learning-based optimization
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Neural network control

Success stories in robotics

— ——
AlDrar
Human!
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<~\ ¥ 7'robots"are set up
to collect grasping episodes
with aytgnomous self-supgefVision

[Kalashnikov et al., ‘18] [Youssef et al., ‘20] [Kaufmann et al., ‘23]

= Flexibility of NN controllers, optimization of complex objective functions
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Two challenges

1. Certify closed-loop stability during the learning?

Goal: stability for all choices of #

Unified methodology
ontrollers. .

From designing stabilizing C

- 1o designing stap|
. . e closed-
2. Navigate the highly nonconvex oplimiZatorrrarrere—— l00p maps

olog by
v
)

Goal: converge, fast, to good (local) solution
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Part 1

Stable NN closed-loop maps for nonlinear optimal control

[1] Furieri L., Galimberti C., Ferrari-Trecate G, “Neural system level synthesis: learning over all stabilizing policies for nonlinear systems”, [CDC 2022]
[2] Furieri L., Galimberti C., Ferrari-Trecate G., “Learning to boost the performance of stable nonlinear systems”, [OJ-CSYS, 2024]
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Common scenario in engineering

= ... frequent availability of stabilizing controllers around equilibrium or a reference

... however, stability is not enough

ll-terrain legged-robots/?!

%% OXFORD

Distributed PID control

AV

[1] Wisth, Camurri, Fallon, “VILENS: Visual, inertial, lidar, and leg odometry for all-terrain legged robots." IEEE Transactions on Robotics, 2022
[2] Belke, Holdcroft, Sigrist, Paik, "Morphological flexibility in robotic systems through physical polygon meshing." Nature Machine Intelligence, 2023
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Performance boosting

System
= Nonlinear, stable/pre-stabilized ul AN «x
B - - ==
K(:)
Performance-boosting controller Nonlinear Optimal Control
= Stability-preserving, optimizing complex costs K() € argmin _E, [L(zo.7, uo-T)]
= Performance = task execution, safety, robustness, ... s.t. CLOSED-LOOP STABILITY
Goals

= Leverage NNs flexibility

= Harness open-loop stability for control design
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Setup and notation

Time-varying, nonlinear, controlled system

Ty = ft(-’Bt—l,ut—l) + Wy
U = Kt(l‘t:o)
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Setup and notation

Time-varying, nonlinear, controlled system

Ty = fe(Te—1,ue—1) + Wy
U = Kt($t:0) \4

Process noise
Dynamic controller
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Setup and notation

Time-varying, nonlinear, controlled system Operator model
e = fe(Te—1,ue-1) + wy K(x) = (Ko(xo), K1 (21:0).-..) X = F(x, u) +w
U = Kt(:L‘t;o) x = (2o, Z1,...) u= K(x)
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Setup and notation

Time-varying, nonlinear, controlled system Operator model

xt = fe(Te—1,ue-1) + we K(x) = (KO(IO)vKl(Il:O)s---)) X = F(x, u) +w
U = Kt(xt;()) x = (zp, 21,...) u= K(X)

LTI system: z: = Azi1 + Bus1 + wy

T 0 0 0 T 0 0 O Ug T
T, A 0 0 T, B 0 0 Uy wy
zl = |0 A O z,| T |10 B 0 uy |+ |wy
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Setup and notation

Time-varying, nonlinear, controlled system Operator model
z¢ = fe(Te-1,ue-1) + we K(x) = (""’(I")*K‘(I““)"“)) x=F(x,u)+w
uy = Ki(ze0) x = (g, x1,...) u = K(x)

Stability in the £, sense

« Ais a stable operator if it is causal and A(x) € /2, VX € £ <«=-=-xecbif Y 5 Ix]? < o0
— Forshort: A € L,

« Stabilizing controller: the closed-loop maps
w — X and w — u are stable operators

Luca Furieri Learning to control and optimize
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Setup and notation

Time-varying, nonlinear, controlled system Operator model
xy = fe(Te—1,us-1) + wy K{x) = (K"(I")‘K‘(““)"“}) x=F(x,u) +w
U = Kt(a:t;o) x = (zp,21,...) u= K(X)

Stability in the £, sense

« Ais a stable operator if it is causal and A(x) € /2, VX € £ <«=-=-xecbif Y 5 Ix]? < o0
— For short: A € L»

« Stabilizing controller: the closed-loop maps
w — X and w — u are stable operators

Assumption: the open-loop plant X = .7:(11, W) is a stable operator

Luca Furieri Learning to control and optimize
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Parametrization of all nonlinear stabilizing controllers

Nominal plant

(internal model)
S——

K(x)

Performance-boozting operator

Y

w

F(x,u) = (F + A)(x,u)

F(x, u)

MeL; and gain(M)<

1. Sufficiency: the controller K(x) as above stabilizes the real system F(x, u) if

1

gain(A)(gain(F)+1)

2. Necessity: if the real model is known (A = 0), then M js the closed-loop map w — u

= Therefore, any stable closed-loop behavior can be obtained by selecting M € L»

[1] L. Furieri, C. L. Galimberti, and GFT, “Neural System Level Synthesis: Learning over All Stabilizing Policies for Nonlinear Systems,” [IEEE CDC 2022
[2] L. Furieri, C. L. Galimberti, and GFT, “Learning to Boost the Performance of Stable Nonlinear Systems,” OJ-CSYS 2024
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Next question...

How to implement neural-network stable operators?

Luca Furieri Learning to control and optimize ry 2025 16




Models of stable operators

Finite-dimensional parametrization of M’ € L,
YoM
" Linear operators M? = z —h" (Finite Impulse Response models)
VA
h=0
®  Nonlinear operators?

Luca Furieri Learning to control and optimize ry 2025 17




Models of stable operators

Finite-dimensional parametrization of M e L,

N oM
= Linear operators M? = E —h"

(Finite Impulse Response models)
VA

h=0
n

Nonlinear operators?

EFFICIENTLY MODELING LONG SEQUENCES WITH
STRUCTURED STATE SPACES

Albert Gu & Karan Goel & Christopher Ré
Department of Computer Science, Stanford University f
{albertgu, krng}@stanford.edu, chrismre@cs.stanford.edu 22

Standard representation and unified stability analysis for dynamic
artificial neural network models

Kwang-Ki K. Kim **, Ernesto Rios Patrén®, Richard D. Braatz

* Department of Electrical Engineering, Inha University, Incheon, Republic of Korea
" Petroleum Inst of Mexico, Mexico City, Mexico

€ Massachusetts Institute of Technology, Cambridge, MA, United States

'18, 23

Recurrent Equilibrium Networks:
Flexible Dynamic Models with Guaranteed Stability
and Robustness
Max Revay, Ruigang Wang, lan R. Manchester ,2 1 ] ‘23

Luca Furieri
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Recurrent Equilibrium Networks (RENs)*-2]
M pen(-)

0 = (A, B, C, D)

= Expressive models including /‘\
& = A1 + BNNS (€1, W)

U = Cff +D NN“(&_1, W)

= Mpeny € L, if there is a storage function V(&) = £ P¢ verifying
V(Erar) — V(&) < 221Well — Iluel

« Free parametrization'?: explicit map © + (6, P) such that Mgaey € L for any © € R?
— Limitation: contractive models

[1] Kim, K. K., E. Rios Patrén, and R. D. Braatz. "Standard representation and unified stability analysis for dynamic artificial neural network models." Neural Networks 2018
[2] Revay, M, R. Wang, and I.R. Manchester. "Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and rob ustness." IEEE TAC 2023
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Deep learning formulation Ko .
u +
1 L N J
Ew [‘C(:BO:T’UO:T)] (x, u)

K(- in —
()GargmmT

s.t. CLOSED-LOOP STABILITY
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Deep learning formulation K(x) w
X
u +
.1 1 Foou)
K() € argmin wa [L(J:O:Ta uO:T)] L] X
s.t. CLOSED-LOOP STABILITY X
°:§§§:° Rollout in time \
eemd S Zc(xo 7> Uo.T)
ft(It laut 1)+wt7 $8=w8
s
subject to 4 , s d [ P et S !
Yo Mg w-estimator ] Mg Uy w-estimator Wo Mg w-estimator —» « « «
= Free parametrization of M — unconstrained optimization — backprop  TensorFlow
« CL stability guaranteed even if optimization stops early () PyTorch
Luca Furieri Learning to control and optimize ry 2025 21




Numerical example: the corridor problem

Targets

/

= 2 robots: point-mass dynamics, nonlinear drag

= Goal: CL stability on targets, avoid collisions & obstacles

2 . .
1
' - ‘-
-1
N o ‘
1 2
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Numerical example: the corridor problem

Targets
\

= 2 robots: point-mass dynamics, nonlinear drag

= Goal: CL stability on targets, avoid collisions & obstacles ,
- -

= Separation of concerns:

1. Design a simple stabilizing base controller
= Linear spring at rest on target (overshoot, collisions....)

2. Performance-boosting controller minimizing r
collisions

L() = Ltarget(') + Lcotisions(*) + Lobstacles (")

C.A. Loss

distance(/, j)

University of California San Diego, 12 February 2025 23
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Numerical example: the corridor problem

= Upon training over a dataset 500 different initial conditions

. K;
Ny :,:. é

= CL stability guaranteed even with early stopping of training

1O 25T SO 757
o e e 0 eo- 0 o

1 2 = -3 -2 -1 0 :
earning to control and optimize

L
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The power of the cost: lessons from RL

: shaping does the magic in RL

= Our result: decoupling reward from stability

Performance-boosting problem

1 S
I
@cRkd Ss_l ( T:05 %710

s.t. xf = fi(wi_,ui_ 1) +wi, x5 =wg

uy = M? (f’?f - ft(xf—lauf—l))

Luca Furieri Learning to control and optimize
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The power of the cost: lessons from RL

Waypoint tracking Safety via invariance
Trained controller Trained controller
g shaping does the magic in RL
‘ = Our result: decoupling reward from stability

Performance-boosting problem

1 S
I
@cRkd Ss_l ( T:00 “T:0

st @) = flel_yuiiy) ¥ wf, af = g

uy = M? (f’?f - ft(xf—lauf—l))

7=01
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Waypoints tracking

= Task specs:
— No collisions

— Blue robot: A — B — C, stabilizing around C .

— Orange robot: C — A — B, stabilizing around B

Luca Furieri Learning to control and optimize




Numerical example: waypoints tracking

« Task specs: B
— No collisions *
— [Blue robot: B — C — A, stabilizing around A
— Orange robot: A — B — C, stabilizing around C

c A
« Waypoints — Linear Temporal Logic formulae!"! — cost L,
Base controller Performance boosting
Pre-stabilized system Trained controller
B B
@ {\f_z/
(o * A C A
=01 7 =01

[1] Li, X., C.-Il. Vasile, and C. Belta. "Reinforcement learning with temporal logic rewards.”, IEEE IROS, 2017
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Embedding safety w

K(x) 4
+
: J@ Focw) O
Feow O M0 "
X X

= Add a safety filter!"! guaranteeing (x;, u;) € C, Vt > 0

= Requires online optimization
= Tweaks u only if needed

[1] Hewing, L., et al. "Leaming-based model predictive control: Toward safe leaming in control." Annual Review of Control, Robotics, and Autonomous Systems, 2020
[2] Agrawal, A., and K. Sreenath. "Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation." Robotics: Science and Systems. 2017

Luca Furieri Learning to control and optimize
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Embedding safety K w

) J@ Fogu)
| .= — W
1 Fexw %ﬁ— Mo [
X X

= Add a safety filter!"! guaranteeing (x;, u;) € C, Vt > 0

= Requires online optimization
= Tweaks u only if needed

= Reduce filter activation embedding soft safety specs in the cost
« Promote constraint fulfillment — L. = max;. 1 Barriers(x;, u;)
= Promote invariance!® of X = {x : h(x) < 0}

Liny = maxq<7 ReLU (h(x;) — h(Xe1) — vh(x;))

[1] Hewing, L., et al. "Leaming-based model predictive control: Toward safe leaming in control." Annual Review of Control, Robotics, and Autonomous Systems, 2020
[2] Agrawal, A., and K. Sreenath. "Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation." Robotics: Science and Systems. 2017
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Numerical example: the safe corridor problem

unsafe region

L without safety-promoting terms L including L;,,
Average violation: 43% Average violation: 1.4%
unsafe region unsafe region

- - - -
@ : ©

Learning to control and optimize
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Not in this talk: extensions

= Interpretation as nonlinear System Level Synthesis and Youla parametrizations!'-2]

= The output-feedback casel?
= Equivalent to internal model control, first proof of necessity

= Applications to distributed system identification and control
= Interconnected stable operators + dissipativity arguments(34]

[1] Furieri L., Galimberti C., Ferrari-Trecate G, “Neural system level synthesis: learning over all stabilizing policies for nonlinear systems”, [CDC 2022]
[2] Galimberti C., Furieri L., Ferrari-Trecate G., “Parametrizations of All Stable Closed-loop Responses: From Theory to Neural Network Control Desigri’, [Arxiv, 2025 ]
[3] Massai L., Saccani D., Furieri L., Ferrari-Trecate G., «Unconstrained learning of networked nonlinear systems via free parametrization of stable interconnected operators», [ECC 2024]

[4] Massai L., Saccani D., Furieri L., Ferrari-Trecate G., «Optimal distributed control with stability guarantees by training a network of neural closed-loop maps», [CDC 2024]
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From designing stabilizing policies... to designing stable closed-loop operators

Part 2: | ... Is this shift in perspective useful for nonconvex optimization?

Luca Furieri Learning to control and optimize
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