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Closing the loop between optimal nonlinear control 
and learning-based optimization

Luca Furieri
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Neural network control

Success stories in robotics

[Youssef et al., ‘20] [Kaufmann et al., ‘23][Kalashnikov et al., ‘18]

▪ Flexibility of NN controllers, optimization of complex objective functions
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Two challenges

1. Certify closed-loop stability during the learning?

2. Navigate the highly nonconvex optimization landscape?

Goal: stability for all choices of 

Goal: converge, fast, to good (local) solution
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Part 1

Stable NN closed-loop maps for nonlinear optimal control

[1] Furieri L., Galimberti C., Ferrari-Trecate G, “Neural system level synthesis: learning over all stabilizing policies for nonlinear systems”, [CDC 2022]
[2] Furieri L., Galimberti C., Ferrari-Trecate G., “Learning to boost the performance of stable nonlinear systems”, [OJ-CSYS, 2024]
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Common scenario in engineering

▪… frequent availability of stabilizing controllers around equilibrium or a reference

8x speed

Distributed PID control

Modular “origami” robot[1]

>4x speed

All-terrain legged-robots[2]

… however, stability is not enough 

[2] Belke, Holdcroft, Sigrist, Paik, "Morphological flexibility in robotic systems through physical polygon meshing." Nature Machine Intelligence, 2023
[1] Wisth, Camurri, Fallon, “VILENS: Visual, inertial, lidar, and leg odometry for all-terrain legged robots." IEEE Transactions on Robotics, 2022
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Performance boosting

Goals
▪ Leverage NNs flexibility
▪ Harness open-loop stability for control design

Performance-boosting controller
▪ Stability-preserving, optimizing complex costs
▪ Performance = task execution, safety, robustness, …

System
▪ Nonlinear, stable/pre-stabilized

Nonlinear Optimal Control
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Setup and notation

Time-varying, nonlinear, controlled system
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Setup and notation

Dynamic controller
Process noise

Time-varying, nonlinear, controlled system
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Setup and notation

Time-varying, nonlinear, controlled system Operator model
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Setup and notation

Time-varying, nonlinear, controlled system Operator model

LTI system: 
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Setup and notation

Stability in the       sense

Time-varying, nonlinear, controlled system Operator model
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Setup and notation

Stability in the       sense

Assumption: the open-loop plant                           is a stable operator 

Time-varying, nonlinear, controlled system Operator model
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1. Sufficiency: the controller           as above stabilizes the real system               if

2. Necessity: if the real model is known , then is the closed-loop map .         

➔ Therefore, any stable closed-loop behavior can be obtained by selecting

[1] L. Furieri, C. L. Galimberti, and GFT, “Neural System Level Synthesis: Learning over All Stabilizing Policies for Nonlinear Systems,” IEEE CDC 2022
[2] L. Furieri, C. L. Galimberti, and GFT, “Learning to Boost the Performance of Stable Nonlinear Systems,” OJ-CSYS 2024

Performance-boosting operatorNominal plant
(internal model)

Parametrization of all nonlinear stabilizing controllers

and
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Next question…

How to implement neural-network stable operators? 
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Models of stable operators

▪ Linear operators (Finite Impulse Response models)

▪ Nonlinear operators?

Finite-dimensional parametrization of 
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Models of stable operators

’21, ‘23

’18, ‘23

’22

▪ Linear operators (Finite Impulse Response models)

▪ Nonlinear operators?

Finite-dimensional parametrization of 
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Recurrent Equilibrium Networks (RENs)[1,2]

[2] Revay, M, R. Wang, and I.R. Manchester. "Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness." IEEE TAC 2023
[1] Kim, K. K., E. Ríos Patrón, and R. D. Braatz. "Standard representation and unified stability analysis for dynamic artificial neural network models." Neural Networks 2018
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Deep learning formulation

CLOSED-LOOP STABILITY
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Deep learning formulation

Rollout in time

CLOSED-LOOP STABILITY
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Numerical example: the corridor problem

▪ 2 robots: point-mass dynamics, nonlinear drag
Targets

▪ Goal: CL stability on targets, avoid collisions & obstacles
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Numerical example: the corridor problem

▪ 2 robots: point-mass dynamics, nonlinear drag
Targets

▪ Goal: CL stability on targets, avoid collisions & obstacles

▪ Separation of concerns:
1. Design a simple stabilizing base controller

▪ Linear spring at rest on target (overshoot, collisions….)
2. Performance-boosting controller minimizing
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Numerical example: the corridor problem
▪ Upon training over a dataset 500 different initial conditions

25% 50% 75%0%

▪ CL stability guaranteed even with early stopping of training
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The power of the cost: lessons from RL

▪ «Reward»  shaping does the magic in RL
▪ Our result: decoupling reward from stability

Performance-boosting problem
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The power of the cost: lessons from RL

Safety via invarianceWaypoint tracking

Performance-boosting problem

▪ «Reward»  shaping does the magic in RL
▪ Our result: decoupling reward from stability
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Waypoints tracking

A

B

C
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Numerical example: waypoints tracking

A

B

C

[1] Li, X., C.-I. Vasile, and C. Belta. "Reinforcement learning with temporal logic rewards.”, IEEE IROS, 2017

Base controller Performance boosting

A

B

CA

B

C
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Embedding safety

[1] Hewing, L., et al. "Learning-based model predictive control: Toward safe learning in control." Annual Review of Control, Robotics, and Autonomous Systems, 2020
[2] Agrawal, A., and K. Sreenath. "Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation." Robotics: Science and Systems. 2017

▪ Requires online optimization
▪ Tweaks u only if needed
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Embedding safety

[1] Hewing, L., et al. "Learning-based model predictive control: Toward safe learning in control." Annual Review of Control, Robotics, and Autonomous Systems, 2020
[2] Agrawal, A., and K. Sreenath. "Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation." Robotics: Science and Systems. 2017

▪ Requires online optimization
▪ Tweaks u only if needed
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Numerical example: the safe corridor problem
unsafe region

unsafe region unsafe region
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Not in this talk: extensions

▪ Interpretation as nonlinear System Level Synthesis and Youla parametrizations[1,2]

▪ The output-feedback case[2]

▪ Equivalent to internal model control, first proof of necessity

▪ Applications to distributed system identification and control
▪ Interconnected stable operators + dissipativity arguments[3,4]

[2] Galimberti C., Furieri L., Ferrari-Trecate G., “Parametrizations of All Stable Closed-loop Responses: From Theory to Neural Network Control Design”, [Arxiv, 2025 ]

[4] Massai L., Saccani D., Furieri L., Ferrari-Trecate G., «Optimal distributed control with stability guarantees by training a network of neural closed-loop maps», [CDC 2024] 

[3] Massai L., Saccani D., Furieri L., Ferrari-Trecate G., «Unconstrained learning of networked nonlinear systems via free parametrization of stable interconnected operators», [ECC 2024]

[1] Furieri L., Galimberti C., Ferrari-Trecate G, “Neural system level synthesis: learning over all stabilizing policies for nonlinear systems”, [CDC 2022]
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… Is this shift in perspective useful for nonconvex optimization?

From designing stabilizing policies... to designing stable closed-loop operators

Part 2:
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