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Closing the loop between nonlinear distributed 
control and learning-based optimization

▪ SNSF Ambizione Fellow at EPF Lausanne (Jan. 2023 to present)

▪ Principal investigator of «Reliable Machine Learning for Distributed Control» 

▪ Postdoc at EPF Lausanne (Nov. 2020 to Dec. 2022)

▪ Working with Prof. Giancarlo Ferrari Trecate


▪ PhD at ETH Zurich (Nov. 2016 to Sep 2020)

▪ Supervised by Prof. Maryam Kamgarpour


Dr.  Luca Furieri
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Optimal control for large-scale dynamical systems

1) Optimality in distributed tasks

2) Uncertain system models

3) Guarantees of learning-based control

▪ Myopic, local improvement global effect 

▪ Noisy data  optimal control policy


▪ Tension: performance VS guarantees

▪ Neural network policies, nonlinear objectives


▪ Closed-loop stability? Safety?

Target challenges
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Optimal Distributed Control (ODC) for Linear Systems 
 

Selected Contributions: Part 1

[1] “Sparsity invariance for convex design of distributed controllers”, Furieri, Zheng, Papachristodoulou, Kamgarpour, TCNS, 2020

[2] “Learning the globally optimal distributed LQ regulator”, Furieri, Zheng, Kamgarpour, L4DC, 2020
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Beyond long-standing limitations of linear ODC[1] 
[1] “Sparsity Invariance for Convex Design of Distributed Controllers”, Furieri, Zheng, Papachristodoulou, Kamgarpour, [TCNS20]* 
*IEEE Transactions on Control of Network Systems Best Paper Award, 2022 
, 2020
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Beyond long-standing limitations of linear ODC[1] 
[1] “Sparsity Invariance for Convex Design of Distributed Controllers”, Furieri, Zheng, Papachristodoulou, Kamgarpour, [TCNS20]* 
*IEEE Transactions on Control of Network Systems Best Paper Award, 2022 
, 2020

Limitation: convex reformulation available only if Quadratic Invariance (QI) holds [Rotkowitz et al., 2006] 

1.  QI as a special case of Sparsity Invariance (SI)  Plant-independent


2.  Globally optimal and sparse        for some non-QI cases


3.  Near-optimality guarantees for arbitrary sparsity patterns 

My Contribution: near-optimal convex restrictions
QI no-longer a limitation for 

sparse controller design

“sparse controller”          “sparse closed-loop maps”“design sparse closed-loop maps”Next question: unknown system model?
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Learning-based control philosophies

Model-based


Model-free

(RL-like)
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Optimal Control

Learning-based control philosophies

Model-based


???
Policy updateSample the cost

Apply policy

???
System Identification

Model-free

(RL-like)


Noisy trajectories▪ Suboptimality (as compared to ground-truth) 

▪ Sample-complexity (how many data?) 

▪ Safety (for the real system) 

Aspects I address
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Model-free learning of the globally optimal distributed LQ regulator[1] 
[1] Furieri, Zheng, Kamgarpour, “Learning the globally optimal distributed LQ regulator”, L4DC, 2020 

The          is nonconvex in distributed policies                          . However;     

Result: Favorable optimization landscape[1]
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Model-free learning of the globally optimal distributed LQ regulator[1] 
[1] Furieri, Zheng, Kamgarpour, “Learning the globally optimal distributed LQ regulator”, L4DC, 2020 

Result: Sample-complexity for global optimality[1]

Assume that PL holds. Run model-free policy gradient for    steps 
with


Then: 

with high probability          . 


The          is nonconvex in distributed policies                          . However;     

Result: Favorable optimization landscape[1]

▪Whenever QI holds,                is Polyak-Lojasiewicz (PL) 

▪ Several non-QI cases are also PL! 


▪… PL holds for arbitrary sparsities? No.
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Selected Contributions: Part 2

[1] Furieri, Galimberti, F. Trecate, “Neural system level synthesis: learning over all stabilizing policies for nonlinear systems”, [CDC 2022]

Learning to control with stability guarantees 
for nonlinear systems

[2] Furieri, Galimberti, F. Trecate, “Learning to boost the performance of stable nonlinear systems”, [ArXiV, 2024]
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[2] Belke, Holdcroft, Sigrist, Paik, "Morphological flexibility in robotic systems through physical polygon meshing." Nature Machine Intelligence, 2023
[1] Wisth, Camurri, Fallon, “VILENS: Visual, inertial, lidar, and leg odometry for all-terrain legged robots." IEEE Transactions on Robotics, 2022

▪Complex real-world systems are nonlinear 


▪ Frequent availability of stabilizing controllers around equilibrium or a reference

Distributed PID control

Modular “origami” robot[1] All-terrain legged-robots[2]
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[2] Belke, Holdcroft, Sigrist, Paik, "Morphological flexibility in robotic systems through physical polygon meshing." Nature Machine Intelligence, 2023
[1] Wisth, Camurri, Fallon, “VILENS: Visual, inertial, lidar, and leg odometry for all-terrain legged robots." IEEE Transactions on Robotics, 2022

▪Complex real-world systems are nonlinear 


▪ Frequent availability of stabilizing controllers around equilibrium or a reference

8x speed

Distributed PID control

Modular “origami” robot[1]

>4x speed

All-terrain legged-robots[2]

… however, stability is not enough 

Improve performance without compromising stability?
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Parametrization of all nonlinear stabilizing controllers[1] 
[1] Furieri, Galimberti, F. Trecate, “Neural system level synthesis: learning over all and only the stabilizing controllers for nonlinear systems”, [CDC 2022] 
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Importance of main result for nonlinear optimal control 
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Importance of main result for nonlinear optimal control 
[1] Furieri, Galimberti, F. Trecate, “Neural system level synthesis: learning over all and only the stabilizing controllers for nonlinear systems”, [CDC 2022] 
[2] Furieri, Galimberti, F. Trecate, “Learning to boost the performance of stable nonlinear systems”, [ArXiV, 2024]

Recurrent equilibrium networks: Flexible dynamic 
models with guaranteed stability and robustness

▪ Theory: directly optimize over stable closed-loop operator

▪ Implementation: compatible with deep neural network stable        operators![3]

[3] “Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness”, Revay, Wang, Manchester, [TAC23]

    Remark: results compatible with distributed nonlinear control

[5] Saccani, Massai, Furieri, F. Trecate, «Optimal distributed control with stability guarantees by training a network of neural closed-loop maps», [ArXiV 2024] 

[4] Massai, Saccani, Furieri, F. Trecate, «Unconstrained learning of networked nonlinear systems via free parametrization of stable interconnected operators», [ECC24]

Nonlinear generalization of “Youla”, “System Level Synthesis”,…
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After performance-boosting
…before performance-boosting

CL stability guaranteed even with partial training 

75% training25% training

Numerical experiments: mobile robots


