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3) Guarantees of learning-based control

= Neural network policies, nonlinear objectives

= Closed-loop stability? Safety?




Selected Contributions: Part 1

Optimal Distributed Control (ODC) for Linear Systems

[1] “Sparsity invariance for convex design of distributed controllers”, Eurieri, Zheng, Papachristodoulou, Kamgarpour, TCNS, 2020

[2] “Learning the globally optimal distributed LQ regulator”, Eurieri, Zheng, Kamgarpour, L4DC, 2020




Beyond long-standing limitations of linear ODCIl

[1] “Sparsity Invariance for Convex Design of Distri
o

c

", Furieri, Zheng, P:

[TCNS20]*

> =|l(w,v) e (W) 32 /7

min cost(G, K)
K stabilizing

subject to K = e

P*O_

Luca Furieri



Beyond long-standing limitations of linear ODCIl

[1] “Sparsity Invariance for Convex Design of Distril C " Furieri, Zheng, P i [TCNS20]*
. > =[l(w,v) = (0y)lhe/m.
G l G.K
v w :
v <l min cost(G, K)
K stabilizing
ceon0®
x x 0 subject to K = 0
Yy [0 x x 1 S

) holds [Rotkowitz et al., 2006]

“design sparse closed-loop maps” “sparse controller” <= “sparse closed-loop maps”

Luca Furieri



Beyond long-standing limitations of linear ODCI1]

Eurieri, Zheng, Papachristodoulou, Kamgarpour, [TCNS20]*

[1] “Sparsity Invariance for Convex Design of Distributed Controllers”,
i pe)

‘ |
v ¢£ <lw min cost(G, K)
K stabilizing

x ox 0 subject to K = F( 0 e
y 0 * T 0 * %

Limitation: convex reformulation available only if Quadratic Invariance (Ql) holds [Rotkowitz et al., 2006]
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2. Globally optimal and sparse K for some non-Ql cases

3. Near-optimality guarantees for arbitrary sparsity patterns
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Learning-based control philosophies

Model-based

Model-free
(RL-like)

System Identification Optimal Control
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Noisyl  » Suboptimality (as compared to ground-truth)

= Sample-complexity (how many data?)

= Safety (for the real system)
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Model-free learning of the globally optimal distributed LQ regulatori(il

[1] Furieri, Zheng, Kamgarpour, “Learning the globally optimal distributed LQ regulator”, LADC, 2020

Result: Favorable optimization landscapel’l

The cost is nonconvex in distributed policies 7 € [6 0 . However;
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[1] Furieri, Zheng, Kamgarpour, “Learning the globally optimal distributed LQ regulator”, LADC, 2020

Result: Favorable optimization landscapel’l
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Result: Sample-complexity for global optimality(]

Assume that PL holds. Run model-free policy gradient for 7 steps
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Then:
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Selected Contributions: Part 2

Learning to control with stability guarantees
for nonlinear systems

[1] Eurieri, Galimberti, F. Trecate, “Neural system level synthesis: learning over all stabilizing policies for nonlinear systems”, [CDC 2022]
[2] Eurieri, Galimberti, F. Trecate, “Learning to boost the performance of stable nonlinear systems”, [ArXiV, 2024]




= Complex real-world systems are nonlinear

= Frequent availability of stabilizing controllers around equilibrium or a reference

Modular “origami” robotll E=PFL

Distributed PID control

AV

CROSSING 25CM BARRIERS BY INVERTING ITS LEGS

[1] Wisth, Camurri, Fallon, “VILENS: Visual, inertial, lidar, and leg odometry for all-terrain legged robots." |IEEE Transactions on Robotics, 2022
[2] Belke, Holdcroft, Sigrist, Paik, "Morphological flexibility in robotic systems through physical polygon meshing." Nature Machine Intelligence, 2023
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= Complex real-world systems are nonlinear

= Frequent availability of stabilizing controllers around equilibrium or a reference

... however, stability is not enough

Modular “origami” robotll E=PE All-terrain legged-robotsl
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Parametrization of all nonlinear stabilizing controllersl(il

[1] Eurieri, Galimberti, F. Trecate, “Neural system level synthesis: learning over all and only the stabilizing controllers for nonlinear systems”, [CDC 2022]
[2] Eurieri, Galimberti, F. Trecate, “Learning to boost the performance of stable nonlinear systems”, [ArXiV, 2024]

X = (.’L‘0,$1, .. )
Te= LT we) F00 g ) = (Ko(zo), Ki(210), x =F(x,u) +w
uy = Ki(z+.0) > u = K(x)

Operator model

Main result:[.21 Parametrization of robustly stabilizing controllers + completeness
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Importance of main result for nonlinear optimal control

[1] Eurieri, Galimberti, F. Trecate, “Neural system level synthesis: learning over all and only the stabilizing controllers for nonlinear systems”, [CDC 2022]
[2) Eurieri, Galimberti, F. Trecate, “Learning to boost the performance of stable nonlinear systems”, [ArXiV, 2024]
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Nonlinear generalization of “Youla”, “System Leve?nthesis”,...
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= Theory: directly optimize over stable closed-loop operator A
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[3] “Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness”, Revay, Wang, Manchester, [TAC23]
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= Implementation: compatible with deep neural network stable pperators!il O ytoreh

[3] “Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness”, Revay, Wang, Manchester, [TAC23]

Remark: results compatible with distributed nonlinear control

[4] Massai, Saccani, Furieri, F. Trecate, «Unconstrained learning of

Y via free p ization of stable interconnected operators», [ECC24]

[5] Saccani, Massai, Furieri, F. Trecate, «Optimal distributed control with stability guarantees by training a network of neural closed-loop maps», [ArXiV 2024]
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Numerical experiments: mobile robots .
cost(x, ) = costiarget (X, W) + COSteollisions (X,
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...before performance-boosting
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Numerical experiments: mobile robots .
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