
European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 1

Learning to optimize: convergence guarantees
from convex to nonconvex landscapes

Luca Furieri

Joint work with Andrea Martin and Ian R. Manchester

[2] A. Martin, I. R. Manchester, and L. Furieri «Learning to optimize with guarantees: a complete characterization of linearly convergent
algorithms», ArXiV 2508.00775

[1] A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», IEEE Control Systems Letters, 2024.

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 2

Algorithm design

1. Convergence and feasible iterates

2. Speed: find stationary point in few steps

3. Quality: find low-cost stationary point

Iterative optimization algorithmOptimization program Algorithm requirements:

Learning-based designAnalytical design

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 3

Systems theory for analytical algorithm design

Classical optimization algorithms (gradient descent, accelerated…) as Lure’s systems

Example:

uncertain plant

linear controller with memory

[1] L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 4

Systems theory for analytical algorithm design

[1] L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

Classical optimization algorithms (gradient descent, accelerated…) as Lure’s systems

uncertain plant

linear controller with memory

▪ Design of new algorithms, i.e., matrices (A,B,C)…

▪ …leveraging IQCs and robust control theory[1],[2]

Optimal worst-case convergence rates Limited to convex objective functions

[2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 5

Machine learning for algorithm design

Idea: let a neural network guide the algorithm updates

[1] M. Andrychowiz..., N. De Freitas. «Learning to learn by gradient descent by gradient descent». NeurIPS, 2016.

[2] K. Li. and J. Malik. «Learning to optimize». ICLR, 2016

Empirical performance and generalization Lack of formal guarantees

Train parameters to minimize

promotes solution quality

class of example
problems of interest

promotes convergence

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 6

Train parameters to minimize

promotes solution quality

class of example
problems of interest

promotes convergence

Machine learning for algorithm design

Idea: let a neural network guide the algorithm updates

Empirical performance and generalization Lack of formal guarantees

[1] M. Andrychowiz..., N. De Freitas. «Learning to learn by gradient descent by gradient descent». NeurIPS, 2016.

[2] K. Li. and J. Malik. «Learning to optimize». ICLR, 2016

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 7

▪ Let be a family of objective functions (convex, smooth, PL…)

▪ Let be a legacy algorithm to optimize any function

Problem Formulation

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 8

▪ Let be a family of objective functions (convex, smooth, PL…)

▪ Let be a legacy algorithm to optimize any function

▪ Some objective functions are more frequent than others… e.g. MPC

▪ In general, is drawn from a distribution

Problem Formulation

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 9

Problem Formulation

Goal: Evolve the performance of legacy algorithm over instances …

…without losing worst-case guarantees over the entire family .

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 10

▪ We design evolved algorithms in the form

▪ Algorithm performance for measured as

Problem Formulation

Goal: Evolve the performance of legacy algorithm over instances …

…without losing worst-case guarantees over the entire family .

enhancement term
to be designed

legacy algorithm ensures
convergence/feasibility over

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 11

Scenarios we consider

problem class:

is -smooth

legacy algorithm:

gradient descent

Scenario A[1]: smooth nonconvex landscapes

convergence guarantee:

asymptotic convergence to
stationary point

problem class:

are convex

is nonsmooth

legacy algorithm:

accelerated methods
(e.g., heavy-ball, Nesterov…)

Scenario B[2]: composite convex landscapes

convergence guarantee:

linear convergence

[2] A. Martin, I. R. Manchester, and L. Furieri «Learning to optimize with guarantees: a complete characterization of linearly convergent
algorithms», ArXiV 2508.00775

[1] A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», IEEE Control Systems Letters, 2024.

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 12

Learning to optimize for smooth nonconvex landscapes

Scenario A

[1] A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», IEEE Control Systems Letters, 2024.

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 13

Main result 1: a separation principle for algorithms

Consider the iterations:

enhancement termlegacy algorithm: gradient descent

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 14

Main result 1: a separation principle for algorithms

Consider the iterations:

If , and , then

Evolve gradient descent by designing a finite-energy sequence

enhancement termlegacy algorithm: gradient descent

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 15

Main result 1: a separation principle for algorithms

Consider the iterations:

If , and , then

Needs proof: exponential stability with may not imply stability when l[1]

Evolve gradient descent by designing a finite-energy sequence

[1] H. K. Khalil and J. W. Grizzle. «Nonlinear systems (Vol. 3)» Upper Saddle River, NJ: Prentice hall, 2002

enhancement termlegacy algorithm: gradient descent

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 16

Main result 2: universality

Take any target algorithm converging to a stationary point for all

Proof insight

The target algorithm is equivalent to

for some sequence with finite energy.

1. Construct the update rule matching the algorithm

2. Prove that

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 18

Implications

Neural-network parametrizations

Evolve gradient descent using automatic differentiation

while preserving convergence

Samples from

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 19

How to evolve your convergent algorithm with neural networks

neural network 2: direction

neural network 1: vanishing radius[1],[2]

▪ Factorize using two neural networks:

▪ We prove: the factorization above preserves universality

trainable NN

stable nonlinear dynamics

[1] M. Revay, R. Wang, and I.R. Manchester, «Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness ». IEEE

Transactions on Automatic Control, 2023

[2] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, S. De, «Resurrecting Recurrent Neural Networks for Long Sequences”, ICML, 2024

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 20

Experiment: training a perceptron for image classification

classifier

prediction

tanh

data and labels

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 21

Experiment: training a perceptron for image classification

classifier

prediction

tanh

data and labels

1) train the perceptron with an algorithm (fixed)

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 22

Experiment: training a perceptron for image classification

After training the classifier, evaluate …

… backpropagate through

... then update

classifier

prediction

tanh

data and labels

1) train the perceptron with an algorithm (fixed)

2) train the algorithm itself (train)

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 23

Experiment: training a perceptron for image classification

After training the classifier, evaluate …

… backpropagate through

... then update

classifier

prediction

tanh

data and labels

2) train the algorithm itself (train)

1) train the perceptron with an algorithm (fixed)

3) after training , compare with classical optimizers

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 24

0 20 40 60 80 100

Opt im izat ion steps

0.5

3.0

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

0.5

0 20 40 60 80 100

Opt im izat ion steps

1.6

2.2

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

1.6

Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu

Out-of-sample generalization!

0 20 40 60 80 100

Opt im izat ion steps

1.0

2.5

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

1.0

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 25

Experiment: training a perceptron for image classification

0 20 40 60 80 100

Opt im izat ion steps

1.0

2.5

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

1.0

(a) Activation function: t anh.

0 20 40 60 80 100

Opt im izat ion steps

1.6

2.2

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

1.6

(b) Activation function: sigmoid.

0 20 40 60 80 100

Opt im izat ion steps

0.5

3.0

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

0.5

(c) Activation function: ReLU.

Fig. 1. Training curves of learned and hand-crafted optimizers; shaded areas and solid lines denote standard deviations and mean values,
respectively.

Step t = 20 tanh sigmoid ReLU

Adam 71.7± 5.1% 76.1± 3.1% 52.7± 11.1%
SGD 44.9± 4.2% 79.7± 1.9% 49.8± 9.3%
NAG 79.7± 1.4% 81.1± 1.5% 52.7± 10.2%

RMSprop 69.4± 2.9% 72.8± 2.3% 61.1± 8.9%
ConvergentL2O 87.0 ± 0.5% 86.8 ± 0.6% 86.3± 0.6%

LSTM 82.2± 0.1% 83.3± 0.1% 88.3 ± 0.0%

Step t = 300 tanh sigmoid ReLU

Adam 89.5 ± 0.5% 89.6 ± 0.3% 70.3± 12.2%
SGD 87.4± 0.4% 89.3± 0.3% 80.6± 8.1%
NAG 89.4± 0.2% 89.4± 0.2% 82.2± 7.6%

RMSprop 87.6± 2.1% 88.5± 0.4% 81.5± 7.5%
ConvergentL2O 88.5± 0.2% 88.4± 0.3% 87.7± 0.2%

LSTM 81.4± 0.0% 81.4± 0.0% 88.3 ± 0.0%

the optimization landscape of the ReLU classif er, which may

proveparticularly challenging, ashighlighted in [13], due to its

structural differencewith respect to tanh in (18). Future work

will address the generalization of algorithms trained on the

MNIST dataset to different test datasets, e.g., Fashion-MNIST;

such generalization wasnot achieved using thecurrent shallow

classif er architecture (18).

To compare with alternative L2O approaches [13], we have

trained for 200 epochs a two-layer Long Short-Term Memory

(LSTM) optimizer ut = LSTM(x t ,∇f (x t), f (x t)). As shown
in the table above, the LSTM optimizer achieves similar aver-

age test accuracy as our ConvergentL2O algorithm. Nonethe-

less, the LSTM output ut does not vanish with time, causing

theclassif er parameters to diverge7 – similar phenomenawere

also observed in [15]. None of our simulations exhibited such

divergence as per Theorem 2.

V. CONCLUSION

In this paper, we have introduced a methodology for learn-

ing over all convergent update rules for smooth non-convex op-

timization, thus enabling the automated synthesis of more re-

liable, eff cient, and reconf gurable algorithms. By synergizing

nonlinear system theory with the emerging L2O paradigm, we

aimed to close thegap between off ine, theory-based algorithm

design and adaptable, example-driven approaches that are the

hallmark of ML. Building on the proposed control-theoretic

perspective we have embraced, further avenues for future

research include certifying stronger convergence guarantees of

7We refer to https://github.com/andrea-martin/ConvergentL2O for the cor-
responding plots and the source code reproducing our numerical examples.

learned algorithms for convex optimization, analyzing gener-

alization capabilities, extending our framework to online and

constrained optimization scenarios, and federated learning.

REFERENCES

[1] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[2] Y. E. Nesterov, “A method of solving a convex programming problem
with convergence rate O 1

k 2
,” in Doklady Akademii Nauk, vol. 269,

no. 3. Russian Academy of Sciences, 1983, pp. 543–547.
[3] Y. Bengio, “Practical recommendations for gradient-based training of

deep architectures,” in Neural Networks: Tricks of the Trade: Second
Edition. Springer, 2012, pp. 437–478.

[4] F. Dörf er, Z. He, G. Belgioioso, S. Bolognani, J. Lygeros, and
M. Muehlebach, “Towards a systems theory of algorithms,” arXiv
preprint arXiv:2401.14029, 2024.

[5] L. Lessard, B. Recht, and A. Packard, “Analysis and design of opti-
mization algorithms via integral quadratic constraints,” SIAM Journal
on Optimization, vol. 26, no. 1, pp. 57–95, 2016.

[6] L. Lessard, “The analysis of optimization algorithms: A dissipativity
approach,” IEEE Control Systems Magazine, vol. 42, no. 3, pp. 58–72,
2022.

[7] B. Goujaud, A. Dieuleveut, and A. Taylor, “On fundamental proof
structures in f rst-order optimization,” in 2023 62nd IEEE Conference
on Decision and Control (CDC). IEEE, 2023, pp. 3023–3030.

[8] C. Scherer and C. Ebenbauer, “Convex synthesis of accelerated gradient
algorithms,” SIAM Journal on Control and Optimization, vol. 59, no. 6,
pp. 4615–4645, 2021.

[9] X. Chen and E. Hazan, “Online control for meta-optimization,” in 37-th
Conference on Neural Information Processing Systems, 2023.

[10] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörf er, “Optimization algo-
rithmsas robust feedback controllers,” arXiv preprint arXiv:2103.11329,
2021.

[11] G. Belgioioso, D. Liao-McPherson, M. H. de Badyn, S. Bolognani,
R. S. Smith, J. Lygeros, and F. Dörf er, “Online feedback equilibrium
seeking,” arXiv preprint arXiv:2210.12088, 2022.

[12] T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and W. Yin,
“Learning to optimize: A primer and a benchmark,” Journal of Machine
Learning Research, vol. 23, no. 189, pp. 1–59, 2022.

[13] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, “Learning to learn by
gradient descent by gradient descent,” Advances in neural information
processing systems, vol. 29, 2016.

[14] K. Li and J. Malik, “Learning to optimize,” in International Conference
on Learning Representations, 2017.

[15] ——, “Learning to optimize neural nets,” arXiv preprint
arXiv:1703.00441, 2017.

[16] H. Heaton, X. Chen, Z. Wang, andW. Yin, “Safeguarded learned convex
optimization,” in Proceedings of the AAAI Conference on Artif cial
Intelligence, vol. 37, no. 6, 2023, pp. 7848–7855.

[17] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[18] K.-K. K. Kim, E. R. Patrón, and R. D. Braatz, “Standard representation
and unif ed stability analysis for dynamic artif cial neural network
models,” Neural Networks, vol. 98, pp. 251–262, 2018.

Classifier test accuracy

LSTM

0 20 40 60 80 100

Opt im izat ion steps

0.5

3.0

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

0.5

0 20 40 60 80 100

Opt im izat ion steps

1.6

2.2

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

1.6

Activation function: tanh Activation function: sigmoid Activation function: relu

0 20 40 60 80 100

Opt im izat ion steps

1.0

2.5

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

1.0

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 26

Experiment: training a perceptron for image classification

0 20 40 60 80 100

Opt im izat ion steps

1.0

2.5

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

1.0

(a) Activation function: t anh.

0 20 40 60 80 100

Opt im izat ion steps

1.6

2.2

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

1.6

(b) Activation function: sigmoid.

0 20 40 60 80 100

Opt im izat ion steps

0.5

3.0

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

0.5

(c) Activation function: ReLU.

Fig. 1. Training curves of learned and hand-crafted optimizers; shaded areas and solid lines denote standard deviations and mean values,
respectively.

Step t = 20 tanh sigmoid ReLU

Adam 71.7± 5.1% 76.1± 3.1% 52.7± 11.1%
SGD 44.9± 4.2% 79.7± 1.9% 49.8± 9.3%
NAG 79.7± 1.4% 81.1± 1.5% 52.7± 10.2%

RMSprop 69.4± 2.9% 72.8± 2.3% 61.1± 8.9%
ConvergentL2O 87.0 ± 0.5% 86.8 ± 0.6% 86.3± 0.6%

LSTM 82.2± 0.1% 83.3± 0.1% 88.3 ± 0.0%

Step t = 300 tanh sigmoid ReLU

Adam 89.5 ± 0.5% 89.6 ± 0.3% 70.3± 12.2%
SGD 87.4± 0.4% 89.3± 0.3% 80.6± 8.1%
NAG 89.4± 0.2% 89.4± 0.2% 82.2± 7.6%

RMSprop 87.6± 2.1% 88.5± 0.4% 81.5± 7.5%
ConvergentL2O 88.5± 0.2% 88.4± 0.3% 87.7± 0.2%

LSTM 81.4± 0.0% 81.4± 0.0% 88.3 ± 0.0%

the optimization landscape of the ReLU classif er, which may

proveparticularly challenging, ashighlighted in [13], due to its

structural differencewith respect to tanh in (18). Future work

will address the generalization of algorithms trained on the

MNIST dataset to different test datasets, e.g., Fashion-MNIST;

such generalization wasnot achieved using thecurrent shallow

classif er architecture (18).

To compare with alternative L2O approaches [13], we have

trained for 200 epochs a two-layer Long Short-Term Memory

(LSTM) optimizer ut = LSTM(x t ,∇f (x t), f (x t)). As shown
in the table above, the LSTM optimizer achieves similar aver-

age test accuracy as our ConvergentL2O algorithm. Nonethe-

less, the LSTM output ut does not vanish with time, causing

theclassif er parameters to diverge7 – similar phenomenawere

also observed in [15]. None of our simulations exhibited such

divergence as per Theorem 2.

V. CONCLUSION

In this paper, we have introduced a methodology for learn-

ing over all convergent update rules for smooth non-convex op-

timization, thus enabling the automated synthesis of more re-

liable, eff cient, and reconf gurable algorithms. By synergizing

nonlinear system theory with the emerging L2O paradigm, we

aimed to close thegap between off ine, theory-based algorithm

design and adaptable, example-driven approaches that are the

hallmark of ML. Building on the proposed control-theoretic

perspective we have embraced, further avenues for future

research include certifying stronger convergence guarantees of

7We refer to https://github.com/andrea-martin/ConvergentL2O for the cor-
responding plots and the source code reproducing our numerical examples.

learned algorithms for convex optimization, analyzing gener-

alization capabilities, extending our framework to online and

constrained optimization scenarios, and federated learning.

REFERENCES

[1] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[2] Y. E. Nesterov, “A method of solving a convex programming problem
with convergence rate O 1

k 2
,” in Doklady Akademii Nauk, vol. 269,

no. 3. Russian Academy of Sciences, 1983, pp. 543–547.
[3] Y. Bengio, “Practical recommendations for gradient-based training of

deep architectures,” in Neural Networks: Tricks of the Trade: Second
Edition. Springer, 2012, pp. 437–478.

[4] F. Dörf er, Z. He, G. Belgioioso, S. Bolognani, J. Lygeros, and
M. Muehlebach, “Towards a systems theory of algorithms,” arXiv
preprint arXiv:2401.14029, 2024.

[5] L. Lessard, B. Recht, and A. Packard, “Analysis and design of opti-
mization algorithms via integral quadratic constraints,” SIAM Journal
on Optimization, vol. 26, no. 1, pp. 57–95, 2016.

[6] L. Lessard, “The analysis of optimization algorithms: A dissipativity
approach,” IEEE Control Systems Magazine, vol. 42, no. 3, pp. 58–72,
2022.

[7] B. Goujaud, A. Dieuleveut, and A. Taylor, “On fundamental proof
structures in f rst-order optimization,” in 2023 62nd IEEE Conference
on Decision and Control (CDC). IEEE, 2023, pp. 3023–3030.

[8] C. Scherer and C. Ebenbauer, “Convex synthesis of accelerated gradient
algorithms,” SIAM Journal on Control and Optimization, vol. 59, no. 6,
pp. 4615–4645, 2021.

[9] X. Chen and E. Hazan, “Online control for meta-optimization,” in 37-th
Conference on Neural Information Processing Systems, 2023.

[10] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörf er, “Optimization algo-
rithmsas robust feedback controllers,” arXiv preprint arXiv:2103.11329,
2021.

[11] G. Belgioioso, D. Liao-McPherson, M. H. de Badyn, S. Bolognani,
R. S. Smith, J. Lygeros, and F. Dörf er, “Online feedback equilibrium
seeking,” arXiv preprint arXiv:2210.12088, 2022.

[12] T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and W. Yin,
“Learning to optimize: A primer and a benchmark,” Journal of Machine
Learning Research, vol. 23, no. 189, pp. 1–59, 2022.

[13] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, “Learning to learn by
gradient descent by gradient descent,” Advances in neural information
processing systems, vol. 29, 2016.

[14] K. Li and J. Malik, “Learning to optimize,” in International Conference
on Learning Representations, 2017.

[15] ——, “Learning to optimize neural nets,” arXiv preprint
arXiv:1703.00441, 2017.

[16] H. Heaton, X. Chen, Z. Wang, andW. Yin, “Safeguarded learned convex
optimization,” in Proceedings of the AAAI Conference on Artif cial
Intelligence, vol. 37, no. 6, 2023, pp. 7848–7855.

[17] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[18] K.-K. K. Kim, E. R. Patrón, and R. D. Braatz, “Standard representation
and unif ed stability analysis for dynamic artif cial neural network
models,” Neural Networks, vol. 98, pp. 251–262, 2018.

Classifier test accuracy

0 20 40 60 80 100

Opt im izat ion steps

0.5

3.0

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

0.5

0 20 40 60 80 100

Opt im izat ion steps

1.6

2.2

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

1.6

Activation function: tanh Activation function: sigmoid Activation function: relu

0 20 40 60 80 100

Opt im izat ion steps

1.0

2.5

L
o

s
s

Adam

SGD

NAG

RMSprop

ConvergentL2O

280 290 300

1.0

LSTM diverges

due to lack of guarantees

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 27

Scenario B

[2] A. Martin, I. R. Manchester, and L. Furieri «Learning to optimize with guarantees: a complete characterization of linearly

convergent algorithms», ArXiV 2508.00775

Learning to evolve linearly convergent algorithms

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 28

Main result 1: evolving a contraction

Consider the iterations:

If , then

monotonically linearly convergent:

Evolve contracting algorithms by designing exponentially decaying

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 29

Main result 1: evolving a contraction

If , then

Evolve contracting algorithms by designing exponentially decaying

Main proof idea: study a perturbed scalar linear system

Same rate , degree of +1

Consider the iterations:

monotonically linearly convergent:

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 30

Main result 1: evolving non-monotonic accelerated algorithms

non-monotonically linearly convergent:

(e.g., Nesterov for strongly convex)

Let be large enough to satisfy .

If is applied once every steps, then:

Consider the iterations:

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 31

Main result 1: evolving non-monotonic accelerated algorithms

trade-off: how often we inject vs worst-case convergence rate

Let be large enough to satisfy .

If is applied once every steps, then:

Main proof idea: the repeated legacy algorithm remains monotonic...

non-monotonically linearly convergent:

(e.g., Nesterov for strongly convex)

Consider the iterations:

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 32

Main result 2: universality

Take any linearly convergent target algorithm with rate

The target algorithm is equivalent to

for some sequence with if is monotonic and Lipschitz wrt

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 33

Main result 2: universality

Take any linearly convergent target algorithm with rate

The target algorithm is equivalent to

for some sequence with if is monotonic and Lipschitz wrt

Proof sketch

▪ The sequence achieving te same iterations as is

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 34

Main result 2: universality

Take any linearly convergent target algorithm with rate

The target algorithm is equivalent to

for some sequence with if is monotonic and Lipschitz wrt

Proof sketch

▪ The sequence achieving te same iterations as is

vanishes with

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 35

Main result 2: universality

Take any linearly convergent target algorithm with rate

The target algorithm is equivalent to

for some sequence with if is monotonic and Lipschitz wrt

Proof sketch

▪ The sequence achieving te same iterations as is

vanishes with vanishes with by assumption

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 36

Main result 2: universality

Take any linearly convergent target algorithm with rate

The target algorithm is equivalent to

for some sequence with if is monotonic and Lipschitz wrt

Proof sketch

▪ The sequence achieving te same iterations as is

vanishes with vanishes with by assumption

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 37

problem class:

is strongly convex
is smooth

legacy algorithm:

heavy-ball, Nesterov,
accelerated methods of [1], [2]

convergence guarantees:

preserves linear convergence

Examples of compatible problems: unconstrained

[1] L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 38

problem class:

is strongly convex
is smooth

legacy algorithm:

heavy-ball, Nesterov,
accelerated methods of [1], [2]

convergence guarantees:

preserves linear convergence

Examples of compatible problems: unconstrained

problem class:

is strongly convex
is convex, nonsmooth

legacy algorithm:

proximal gradient descent

convergence guarantees:

all linearly convergent algorithms

[1] L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 39

problem class:

is strongly convex

legacy algorithm:

proximal gradient descent

convergence guarantees:

all linearly convergent algorithms

Examples of compatible problems: constrained

feasibility only upon convergence…

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 40

problem class:

is strongly convex

legacy algorithm:

proximal gradient descent

convergence guarantees:

all linearly convergent algorithms

guarantees if :

all linearly convergent algorithms

with feasible iterates

Examples of compatible problems: constrained

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 41

Experiment: solving hard systems of linear equations

slow convergence speed when is large

…in this example

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 42

Experiment: solving hard systems of linear equations

slow convergence speed when is large

…in this example

same asymptotic
rate as NAG

improved transient
behavior

Train to evolve NAG…

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 43

Conclusions

▪ A characterization of all asymptotically (A) and linearly convergent (B) algorithms

▪ legacy algorithm as a base policy + nonlinear dynamic updates

Neural-network based evolution of classical algorithms

European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 44

Conclusions

▪ A characterization of all asymptotically (A) and linearly convergent (B) algorithms

▪ legacy algorithm as a base policy + nonlinear dynamic updates

[1] R. Sambharya, B. Stellato, “Data-Driven Performance Guarantees for Classical and Learned Optimizers”, [ArXiV, 2024]

▪ Performance generalization guarantees[1]

▪ Impact on Model Predictive Control (e.g., evolve IPOPT, OSQP…)

▪ Inverse design, e.g.: «for which control cost is NAG optimal?

Future work

Neural-network based evolution of classical algorithms

	Default Section
	Slide 1
	Slide 2: Algorithm design

	Background
	Slide 3: Systems theory for analytical algorithm design
	Slide 4: Systems theory for analytical algorithm design
	Slide 5: Machine learning for algorithm design
	Slide 6: Machine learning for algorithm design
	Slide 7: Problem Formulation
	Slide 8: Problem Formulation
	Slide 9: Problem Formulation
	Slide 10: Problem Formulation
	Slide 11: Scenarios we consider

	Scenario A
	Slide 12
	Slide 13: Main result 1: a separation principle for algorithms
	Slide 14: Main result 1: a separation principle for algorithms
	Slide 15: Main result 1: a separation principle for algorithms
	Slide 16: Main result 2: universality
	Slide 18: Implications
	Slide 19: How to evolve your convergent algorithm with neural networks
	Slide 20: Experiment: training a perceptron for image classification
	Slide 21: Experiment: training a perceptron for image classification
	Slide 22: Experiment: training a perceptron for image classification
	Slide 23: Experiment: training a perceptron for image classification
	Slide 24: Experiment: training a perceptron for image classification
	Slide 25: Experiment: training a perceptron for image classification
	Slide 26: Experiment: training a perceptron for image classification

	Scenario B
	Slide 27
	Slide 28: Main result 1: evolving a contraction
	Slide 29: Main result 1: evolving a contraction
	Slide 30: Main result 1: evolving non-monotonic accelerated algorithms
	Slide 31: Main result 1: evolving non-monotonic accelerated algorithms
	Slide 32: Main result 2: universality
	Slide 33: Main result 2: universality
	Slide 34: Main result 2: universality
	Slide 35: Main result 2: universality
	Slide 36: Main result 2: universality
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Examples of compatible problems: constrained

	Implementation
	Slide 41: Experiment: solving hard systems of linear equations
	Slide 42: Experiment: solving hard systems of linear equations
	Slide 43: Conclusions
	Slide 44: Conclusions

