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Algorithm design

Optimization program Iterative optimization algorithm Algorithm requirements:

1. Convergence and feasible iterates

£ = argming = f{£)

2. Speed: find stationary point in few steps

3. Quality: find low-cost stationary point

Analytical design Learning-based design

Problem Class 1Formal guarantees - _ Traini
> [Desugned algorlthm] ( Tunable ) raining [ Learnt algorithm ]

(e.g., convex, PL...U > >
- " D —
: algorithm :

Y H ;

i-¢-{ Example <
Optimization Problems|[\| || | "~ xample [y-<- -
° (from the Class) problems Optimization Problems
(new, unseen)
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Systems theory for analytical algorithm design

Classical optimization algorithms (gradient descent, accelerated...) as Lure’s systems

uncertain plant

A

Y = Vf(uy)

Ei+1 = A& + By
Uy = Cft

J

linear controller with memory

A

Etr1 =& — ’-‘va{ft]

Example: I

A|B1 [ ILi|-nl
C|D| | L] Od

[1]1L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021
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Systems theory for analytical algorithm design

Classical optimization algorithms (gradient descent, accelerated...) as Lure’s systems

uncertain plant

yr = Vf(ut) : , : -
\ J = Design of new algorithms, i.e., matrices (A,B,C)...

A

= _..leveraging IQCs and robust control theory('l.[2]
&1 = A& + By ging b

u = C&;

A

J
linear controller with memory

Optimal worst-case convergence rates Q Limited to convex objective functions

[1]1L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021
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Machine learning for algorithm design

)
ORGP ‘o]

Idea: let a neural network guide the algorithm updates —  £io1 = &+ 9 5

promotes convergence

T
Train parameters 6 to minimize Efcpxamptes | ¥ @V (&)[* + v£(&)

j =0
class of example

problems of interest _ _
promotes solution quality

Empirical performance and generalization Q Lack of formal guarantees

[1] M. Andrychowiz..., N. De Freitas. «Learning to leam by gradient descent by gradient descent». NeurlPS, 2016.
[2] K. Li. and J. Malik. «Learning to optimize». ICLR, 2016
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Machine learning for algorithm design

Idea: let a neural network guide the algorithm updates — £::o1 = &+ ﬂ

M

Train parameters g updates-"
- \earne
| Joit flexioility © ity guarantees
class feas
nd
proble , Con\/ergence a | |
hile preSeng —iutnotes solution quality

Empirical performance and generalization Q Lack of formal guarantees

[1] M. Andrychowiz..., N. De Freitas. «Learning to leam by gradient descent by gradient descent». NeurlPS, 2016.
[2] K. Li. and J. Malik. «Learning to optimize». ICLR, 2016
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Problem Formulation

» Let F be a family of objective functions (convex, smooth, PL...)

= Let m be a legacy algorithm &:+1 = w(£w0) to optimize any function f & F
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Problem Formulation

» Let F be a family of objective functions (convex, smooth, PL...)
= Let m be a legacy algorithm &:+1 = w(£w0) to optimize any function f & F

= Some objective functions are more frequent than others... e.g. MPC

N-1
. T T T ) _ _
HIJ-E:-I-]:]'I:-I-IL—I. ;Ek Q‘Lk+uk Ruk+ml"l{?3ﬁ' E— [Hfj.,u]_?... :,'?LI!-J".;} ﬂ];il'.l 'ETGE'i_ bT':El'I]'E
: | )
subject to xp = 2y, 241 = Azg + Buy subject to € € C(xo)

IkEI,ukEu,wa.ﬁl}

* In general, f € F is drawn from a distribution f ~ I
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Problem Formulation

Goal: Evolve the performance of legacy algorithm = over instances f ~Dx...
...without losing worst-case guarantees over the entire family F .
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Problem Formulation

Goal: Evolve the performance of legacy algorithm = over instances f ~Dx...
...without losing worst-case guarantees over the entire family F .

= We design evolved algorithms in the form

Ee1 = m(&e) + v(&e0) enhancement term

, to be designed
legacy algorithm ensures

convergence/feasibility over F

T
= Algorithm performance for f ~ D'y measured as E;._p, [z o VF(E) 2 + v (&)

t=il

Luca Furieri Learning to optimize with guarantees , Thessaloniki, 24 June 2025 10




Scenarios we consider

Scenario Al'l: smooth nonconvex landscapes

4 min £(€) )
convergence guarantee:
problem class: legacy algorithm: _
o _ asymptotic convergence to
fis B-smooth gradient descent stationary point
- J
Scenario BI2l: composite convex landscapes
4 . N
min f(£) + g()
tER?

] convergence guarantee:
problem class: legacy algorithm: _

f erated method linear convergence
4 are convex accelerated methods Eprs — E%] < p(t)tEq — €]

(e.g., heavy-ball, Nesterov...)

\_ 9 IS nonsmooth

)

[1] A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», |IEEE Control Systems Letters, 2024.

[2] A. Martin, I. R. Manchester, and L. Furieri «Learning to optimize with guarantees: a complete characterization of linearly convergent
algorithms», ArXiV 2508.00775
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Scenario A

Learning to optimize for smooth nonconvex landscapes

[11 A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», IEEE Control Systems Letters, 2024.
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Main result 1: a separation principle for algorithms

Consider the iterations:  £41 = & — gV f(&) + v

legacy algorithm: gradient desc@ l enhancement term
L
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Main result 1: a separation principle for algorithms

Consider the iterations:  £41 = & — gV f(&) + v

legacy algorithm: gradient desc@ l enhancement term
L

f0<n<B87", and Y |u|® <oo,then B |Vf(&)]F <o
t=I

=i}

I:> Evolve gradient descent by designing a finite-energy sequence v:
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Main result 1: a separation principle for algorithms

Consider the iterations:  £41 = & — gV f(&) + v

legacy algorithm: gradient desc@ l enhancement term
L

f0<n<B87", and Y |u|® <oo,then B |Vf(&)]F <o
t=I

=i}

I:> Evolve gradient descent by designing a finite-energy sequence v:

e =)

€ Needs proof: exponential stability with v: = 0 may not imply stability when Z |ve|* < ool]

t=I1

[11 H. K. Khaliland J. W. Grizzle. «Nonlinear systems (Vol. 3)» Upper Saddle River, NJ: Prentice hall, 2002
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Main result 2: universality

Take any target algorithm &:11 = o:(£:.0) converging to a stationary point for all f € F,,.00h

The target algorithm &:+1 = o¢(£::0) is equivalent to

Eie1 = & — NV f(&) + ve( S, €o) (

for some sequence v:(f,&n) with finite energy.

3 e (f, €0)* < m)

=l

Proof insight

1. Construct the update rule wv(f,£0) matching the algori

2. Prove that Z|L=¢{J"",En]ll"E < 0O

f=10

Luca Furieri Learning to optimize with guarantees rence, Thessaloniki, 24 June 2025 16




Implications

Evolve gradient descent using automatic differentiation
while preserving convergence

T
min 7| allVAE)S + S (&)
fEExamples Li=0

subject to &1 = & — V(&) + ve( [, £x0,6)
S

Neural-network parametrizations -+ ( .’ PyTor'Ch

Samples fro

Luca Furieri Learning to optimize with guarantees

nce, Thessaloniki, 24 June 2025 18




How to evolve your convergent algorithm with neural networks

= Factorize v:(ér0,#) using two neural networks:

neural network 2: direction
(‘ trainable NN

ve( f, €e0) = 1e(€o, O)de(Eeo, flEr0), VI (Ee0), 0) :> stable nonlinear dynamics

& neural network 1: vanishing radius!}[2]

= We prove: the factorization above preserves universality

[1]1 M. Revay, R. Wang, and |I.R. Manchester, « Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness». IEEE
Transactions on Automatic Control, 2023
[2] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, S. De, «Resurrecting Recurrent Neural Networks for Long Sequences”, ICML, 2024
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Experiment: training a perceptron for image classification

1) train the perceptron with an algorithm (fixed /)

data and labels

o]

Q ol
o 8 ol
Q g o .
o= o8 anrt

classifier
Tk (&)

—
prediction

000

C

A LW~
Aadentbi—-0
LI G eW PN -
D d e LUN -~
PN PP N N N
D~ NL W N
A I eV o WP N
SN FTwmLAyr -0
LRI FhRPND
29I NARL~D
e A R )
D NSPLhb~-0
Sefleneww=
DRI HYN WY -
LaNfnyQCWPND
PwuETALWP =0

Eevr = & — nVF (&) + re(bo, B)di(Ee0, f(Et0), V(Een), )
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Experiment: training a perceptron for image classification

1) train the perceptron with an algorithm (fixed /)

@

saNangcwps0o )

S EALTWN ~Q

data and lab

(o]
AN

DY O WY -

= fagh = classifier
v o icti (&)
AN Rl prediction

A LW~
AaAaAdendtbi—-0
LI G eW PN -
D d e LUN -~
PN PP N N N
D~ NL W N
A I eV o WP N
SN LA -0
LRI FhRPND
29I NARL~D
DDA Rwrse —~ D
dNsOLh b —
LR B R

<9

0
=

Eevr = & — nVF (&) + re(bo, B)di(Ee0, f(Et0), V(Een), )

2) train the algorithm itself (train )
T
After training the classifier, evaluate AlgPerf(d) = Zamf[.f,jﬁ ++fl&) ...
t=il

... backpropagate through #

... then update #

erence, Thessaloniki, 24 June 2025 22
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Experiment: training a perceptron for image classification

1) train the perceptron with an algorithm (fixed /)

data and labels

000000002002 000

I A A I N B

2222932222222 A02 s .
2233333%5353333333 tanh 7, ClaSSIfler
A LA REEEERRRE > — . . (‘ft}
5558555855755 555s f W

L6 bblLbbboEsdGEG L ﬂ(; ' predlctlon
TI79277710TI2012F777 W

Y5 IwEEP L EPTTYLCE -

$99949%94949449 9

Eevr = & — nVF (&) + re(bo, B)di(Ee0, f(Et0), V(Een), )

2) train the algorithm itself (train )
T
After training the classifier, evaluate AlgPerf(d) = Zamf[.f,jﬁ ++fl&) ...
.. backpropagate through #

.. then update # 3) after training t/, compare with classical optimizers

onference, Thessaloniki, 24 June 2025 23
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Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu

—— Adam —— NAG - ConvergentL20

—— SGD —— RMSprop
1.0 m

T
290 300

— NAG - ConvergentL20 = Adam = NAG - ConvergentL20

30NN — seb  — Rusprop

2.5

—— RMSprop

2.2 1.6

Loss

1.6

1.0 1

0 20 40 60 80 100
Optimization steps

40 60 80 100 0 20 40 60 80 100
Optimization steps Optimization steps

Out-of-sample generalization!
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Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu

—— Adam —— NAG —— ConvergentL20 —— NAG — NAG

—— Adam —— Adam

25 - ConvergentL20 30N\ - ConvergentL20
' —— SGD —— RMSprop 29 —— SGD —— RMSprop 16 : \N ——— SGD —— RMSprop
10 {25
g 2;30 ZéO 300 %
0.5
10+ 1.6
0 2I0 4I0 6I0 8I0 100 0 2IO 4I0 6I0 8I0 100 0 2I0 4I0 6I0 8I0 100
Optimization steps Optimization steps Optimization steps
Q 0O
S P
Classifier test accuracy o S S
=& — V. + L9 :
Step t = 20 tanh sigmoid RelU §ev1 = & — VI (&) e N -
Adam 71.7 £5.1% 76.1 £3.1% 52.7 #11.1% O N\~
SGD 44.9 +42%  79.7 +1.9%  49.8 +9.3% ° ©
NAG 79.7 £1.4% 81.1 #1.5% 52.7 £10.2% , 8
RM Sprop 69.4 +2.9% 72.8 +2.3% 61.1 +#8.9% & o o
ConvergentL20 | 87.0 #0.5% 86.8 #0.6%  86.3 +0.6% = M
LSTM 822 +0.1%  83.3 £0.1% 883 £0.0% — » &41 =&+ & . -
Et‘-O
o}

Luca Furieri

Learning to optimize with guarantees

Thessaloniki, 24 June 2025

25



Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu

— NAG — NAG

—— Adam

—— Adam = ConvergentL20 —— Adam =—— NAG —— ConvergentL20 —— ConvergentL20

25 —— SGD —— RMSprop 29 —— SGD —— RMSprop 16 3.0 i \ ——— SGD —— RMSprop
o | B
g 2flso zslao 300 %
0.5
10+ 1.6
0 2I0 4I0 6I0 8I0 100 0 2IO 4I0 6I0 8IO 100 0 2I0 4I0 6I0 8I0 100
Optimization steps Optimization steps Optimization steps
Average norm of classifier parameters over iterations
—— Norm of weights (LSTM) //
10° { —— Norm of biases (LSTM)
Classifier test accuracy T o e o
Step t = 20 tanh sigmoid ReLU LSTM diverges
Adam 717 £51% 761 £3.1% 52.7 Z11.1% ue to lack of gu
SGD 44.9 +4.2% 79.7 +£1.9% 49.8 +9.3% H 7
NAG 79.7 £1.4% 81.1 £1.5% 52.7 £10.2%
RM Sprop 69.4 +£2.9% 72.8 +£2.3% 61.1 £8.9% e
ConvergentL20 | 87.0 £0.5% 86.8 £0.6% 86.3 £0.6%
LSTM 82.2 £0.1% 83.3 £0.1% 88.3 £0.0% 1°"/’_
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Scenario B

Learning to evolve linearly convergent algorithms

[2] A. Martin, |. R. Manchester, and L. Furieri « Learning to optimize with guarantees: a complete characterization of linearly
convergent algorithms», ArXiV 2508.00775

Luca Furieri Learning to optimize with guarantees , Thessaloniki, 24 June 2025
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Main result 1: evolving a contraction

(_\ monotonically linearly convergent:

Consider the iterations: &1 = w(f, &) + vt €nr — ] < 4t|€ — €]

If [ve] < p(t)y", then [§e1 — €7[ < a()7"[€0 — €7

|:> Evolve contracting algorithms by designing exponentially decaying v:

Luca Furieri Learning to optimize with guarantees
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Main result 1: evolving a contraction

(_\ monotonically linearly convergent:

Consider the iterations: &1 = w(f, &) + vt €01 — E*] < 1€ — £

If [ve] < p(t)y", then [€es1 — 7| < a(t)y"[€ — €7

|:> Evolve contracting algorithms by designing exponentially decaying v:

Main proof idea: study a perturbed scalar linear system

t—1 £—1
|6 — €| = de < 7o + Z Ylug—1—k| < v'da + Z'}'kp[t — 1 — k)ytik
k=0 k=0
1 t—1
< o (5n + Zp{k}) =|~'q(t)
T = Same rate 7, degree of p(t) +1
=0 \/

Luca Furieri Learning to optimize with guarantees ence, Thessaloniki, 24 June 2025 29




Main result 1: evolving non-monotonic accelerated algorithms

(_\ non-monotonically linearly convergent:

Consider the iterations:  £iy1 = w(f, &) + v: €01 — E%| < rlt)ytE — €]

(e.g., Nesterov for strongly convex)

Let N € N be large enough to satisfy r(N)+™" < 1.
If [vel <p(t)y" is applied once every N _steps, then:

o1 — €1 < a®)( V/r(V)) Jeo - €

Luca Furieri Learning to optimize with guarantees ence, Thessaloniki, 24 June 2025 30




Main result 1: evolving non-monotonic accelerated algorithms

(_\ non-monotonically linearly convergent:

Consider the iterations: &1 = w(f, &) + vs €01 — EF| < Tt € — €7

(e.g., Nesterov for strongly convex)

Let N € N be large enough to satisfy (V)" < 1.
If [vel <p(t)y" is applied once every N _steps, then:

o1 — €71 < () (V/r(V)) Jeo — €71
O

trade-off: how often we inject v: vs worst-case convergence rate '"{/r[_-""."}“,r'

Main proof idea: the repeated legacy algorithm &1 = ?r“r{f= £:) remains monotonic...

Luca Furieri Learning to optimize with guarantees
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Main result 2: universality

Take any linearly convergent target algorithm £:1 = ¢(£&:.0) with rate

The target algorithm &:+1 = o¢(£::0) is equivalent to

Ervr = (f &) + vel f, &)

for some sequence v:(f, £r.0) with [ve] < p(t)y" if m(f, &) is monotonic and Lipschitz wrt &

Luca Furieri Learning to optimize with guarantees e, Thessaloniki, 24 June 2025 32




Main result 2: universality

Take any linearly convergent target algorithm £:1 = ¢(£&:.0) with rate

The target algorithm &:+1 = o¢(£::0) is equivalent to

Ervr = (f &) + vel f, &)

for some sequence v:(f, £r.0) with [ve] < p(t)y" if m(f, &) is monotonic and Lipschitz wrt &

Proof sketch

= The sequence v: achieving te same iterations as £i41 = g¢(€0) is

Uy = —Tflifa it] + ﬂt{rft:n] = —[W{f-. '-fi] - rft} + {Ht{ft;n] - ﬁt]

Luca Furieri Learning to optimize with guarantees nce, Thessaloniki, 24 June 2025 33



Main result 2: universality

Take any linearly convergent target algorithm £:1 = ¢(£&:.0) with rate

The target algorithm &:+1 = o¢(£::0) is equivalent to

Ervr = (f &) + vel f, &)

for some sequence v:(f, £r.0) with [ve] < p(t)y" if m(f, &) is monotonic and Lipschitz wrt &

Proof sketch

= The sequence v: achieving te same iterations as £i41 = g¢(€0) is

vy = _Tﬂif:- ':f,] + Ut{rft:n] = —[W{f-. £t) — rft} + {Ht{ft;n] - ﬁt]

[m(fs&e) — &| < (Lx + 1) — £7|

. . t
vanishes with 7
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Main result 2: universality

Take any linearly convergent target algorithm £:1 = ¢(£&:.0) with rate

The target algorithm &:+1 = o¢(£::0) is equivalent to

Ervr = (f &) + vel f, &)

for some sequence v:(f, &.0) with [ve| < p(t)y" if w(f,&:) is monotonic and Lipschitz wrt &

Proof sketch

= The sequence v: achieving te same iterations as £i41 = g¢(€0) is

vy = _Tﬂif:- ':f,] + Ut{rft:n] = —[W{f-. £t) — rft} + {Ht{ft:n] - ﬁt]

[m(fi &) — &:| < (Lx +1)|& — &7 Et41 — &
vanishes with 7° vanishes with v* by assumption
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Main result 2: universality

Take any linearly convergent target algorithm £:1 = ¢(£&:.0) with rate

The target algorithm &:+1 = o¢(£::0) is equivalent to

Eiv1 =m(f, &) + v

for some sequence v nic and Lipschitz wrt &:

Many 1692y @

— —m[f, — &) + 'I:H:'I:Et::}] - 5:]
- |
[m(f, &) — &l < (Lr +1)|§ — &7 Eip1 — &
vanishes with 7° vanishes with v* by assumption
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Examples of compatible problems: unconstrained

4 min f(£) I

£eR
problem class: legacy algorithm: convergence guarantees:
f is strongly convex heavy-ball, Nesterov, preserves linear convergence
J is smooth accelerated methods of [1], [2] Eip1 = m(f,E) + v

/

[1]1L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021
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Examples of compatible problems: unconstrained

- ~ N
min f(¢)
problem class: legacy algorithm: convergence guarantees:
[ is strongly convex heavy-ball, Nesterov, preserves linear convergence
J is smooth accelerated methods of [1], [2] Eip1 = m(f,E) + v Y
4 min f(€) + g(€) R
£cR?
problem class: legacy algorithm: convergence guarantees:
f is strongly convex proximal gradient descent  all linearly convergent algorithms

\_q' is convex, nonsmooth  (f,&) = prox, (& — nVf(&)) Eev1r = w(f. &) +ve(f, €o) )

[1]1L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021
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Examples of compatible problems: constrained

/ min f() \

subject to A£ < b

problem class: legacy algorithm: convergence guarantees:
f is strongly convex proximal gradient descent  all linearly convergent algorithms
K m(f,&) = projz(& —nVf(&)) S =7l &) +ulf, Enjj

feasibility only upon convergence...

Luca Furieri Learning to optimize with guarantees rence, Thessaloniki, 24 June 2025 39




Examples of compatible problems: constrained

/ min f(£) \
(ERT
subject to A£ < b

problem class: legacy algorithm: convergence guarantees:
f is strongly convex proximal gradient descent  all linearly convergent algorithms

w(f, &) = proj=(& — nVf (&) o1 = m(f, &) +ve(f, €o)

guarantees if Av; < 0:
all linearly convergent algorithms

'££+1 — ﬂ_{f:- ‘f’ﬁ) + T"'.tl::f:- '-EU:]
K with feasible iterates &; € = /

nce, Thessaloniki, 24 June 2025 40
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Experiment: solving hard systems of linear equations

I min Af — by)? (A, b;) ~ Gaussian(0.5,0.04)
10 L slow convergence speed whenx(4" 4) is large
: o ...in this example x(AT A) ~ 18.7M
- 1 0.0 22
— GD
- |_0'5 20
18 ~

10 4

T T T T T T
0 2000 4000 6000 8000 10000
teration
rence, Thessaloniki, 24 June 2025
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Experiment: solving hard systems of linear equations

leB

I uEi.u Af — by (A, b;) ~ Gaussian((.5,0.04)

10 L slow convergence speed whenx(4" 4) is large

-05

...in this example x(AT A) ~ 18.7M

I - G = MNaG = Durs (augmented N&G)
—0.5

20
15 10 - T
Train v¢(&:.0) to evolve NAG... .
- o

improved transient .

Loss

same asymptotic
rate as NAG

behavior 0 2000 4000 6000 BOOO 10000
Optimization steps
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Conclusions

= A characterization of all asymptotically (A) and linearly convergent (B) algorithms
= legacy algorithm as a base policy + nonlinear dynamic updates

Neural-network based evolution of classical algorithms
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Conclusions

= A characterization of all asympftotically (A) and linearly convergent (B) algorithms
= legacy algorithm as a base policy + nonlinear dynamic updates

Neural-network based evolution of classical algorithms

Future work

= Performance generalization guarantees!'!
= Impact on Model Predictive Control (e.g., evolve IPOPT, OSQP...)
= |Inverse design, e.q.: «for which control cost is NAG optimal?

[11 R. Sambharya, B. Stellato, “Data-Driven Performance Guarantees for Classical and Leamed Optimizers”, [ArXiV, 2024]
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