Learning to optimize: convergence guarantees
from convex to nonconvex landscapes

Luca Furieri

Joint work with Andrea Martin and lan R. Manchester

S o Q% = %9
FKTHS I—I_' Swiss National
<’ OXFORD B, verenswar o THE UNIVERSITY OF Science Foundation
Yot SYDNEY

by

[1] A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», |IEEE Control Systems Letters, 2024.

[2] A. Martin, I. R. Manchester, and L. Furieri «Learning to optimize with guarantees: a complete characterization of linearly convergent
algorithms», ArXiV 2508.00775

Luca Furieri Learning to optimize with guarantees erence, Thessaloniki, 24 June 2025

Algorithm design

Optimization program Iterative optimization algorithm Algorithm requirements:

1. Convergence and feasible iterates

£ = argming = f{£)

2. Speed: find stationary point in few steps

3. Quality: find low-cost stationary point

Analytical design Learning-based design

Problem Class 1Formal guarantees - _ Traini
> [Desugned algorlthm] (Tunable) raining [Learnt algorithm]

(e.g., convex, PL...U > >
- " D —
: algorithm :

Y H ;

i-¢-{ Example <
Optimization Problems|[\| || | "~ xample [y-<- -
° (from the Class) problems Optimization Problems
(new, unseen)

N =JNIN J s

rence, Thessaloniki, 24 June 2025 2

N

\

Y

Learning to optimize with guarantees

Luca Furieri

Systems theory for analytical algorithm design

Classical optimization algorithms (gradient descent, accelerated...) as Lure’s systems

uncertain plant

A

Y = Vf(uy)

Ei+1 = A& + By
Uy = Cft

J

linear controller with memory

A

Etr1 =& — ’-‘va{ft]

Example: I

A|B1 [ILi|-nl
C|D| | L] Od

[1]1L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021

Luca Furieri

Learning to optimize with guarantees

nference, Thessaloniki, 24 June 2025 3

Systems theory for analytical algorithm design

Classical optimization algorithms (gradient descent, accelerated...) as Lure’s systems

uncertain plant

yr = Vf(ut) : , : -
\ J = Design of new algorithms, i.e., matrices (A,B,C)...

A

= _..leveraging IQCs and robust control theory('l.[2]
&1 = A& + By ging b

u = C&;

A

J
linear controller with memory

Optimal worst-case convergence rates Q Limited to convex objective functions

[1]1L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021

Luca Furieri Learning to optimize with guarantees Conference, Thessaloniki, 24 June 2025 4

Machine learning for algorithm design

)
ORGP ‘o]

Idea: let a neural network guide the algorithm updates — £io1 = &+ 9 5

promotes convergence

T
Train parameters 6 to minimize Efcpxamptes | ¥ @V (&)[* + v£(&)

j =0
class of example

problems of interest _ _
promotes solution quality

Empirical performance and generalization Q Lack of formal guarantees

[1] M. Andrychowiz..., N. De Freitas. «Learning to leam by gradient descent by gradient descent». NeurlPS, 2016.
[2] K. Li. and J. Malik. «Learning to optimize». ICLR, 2016

Luca Furieri Learning to optimize with guarantees

nce, Thessaloniki, 24 June 2025

Machine learning for algorithm design

Idea: let a neural network guide the algorithm updates — £::o1 = &+ ﬂ

M

Train parameters g updates-"
- \earne
| Joit flexioility © ity guarantees
class feas
nd
proble , Con\/ergence a | |
hile preSeng —iutnotes solution quality

Empirical performance and generalization Q Lack of formal guarantees

[1] M. Andrychowiz..., N. De Freitas. «Learning to leam by gradient descent by gradient descent». NeurlPS, 2016.
[2] K. Li. and J. Malik. «Learning to optimize». ICLR, 2016

Luca Furieri Learning to optimize with guarantees onference, Thessaloniki, 24 June 2025

Problem Formulation

» Let F be a family of objective functions (convex, smooth, PL...)

= Let m be a legacy algorithm &:+1 = w(£w0) to optimize any function f & F

Luca Furieri Learning to optimize with guarantees e, Thessaloniki, 24 June 2025 7

Problem Formulation

» Let F be a family of objective functions (convex, smooth, PL...)
= Let m be a legacy algorithm &:+1 = w(£w0) to optimize any function f & F

= Some objective functions are more frequent than others... e.g. MPC

N-1
. T T T) _ _
HIJ-E:-I-]:]'I:-I-IL—I. ;Ek Q‘Lk+uk Ruk+ml"l{?3ﬁ' E— [Hfj.,u]_?... :,'?LI!-J".;} ﬂ];il'.l 'ETGE'i_ bT':El'I]'E
: |)
subject to xp = 2y, 241 = Azg + Buy subject to € € C(xo)

IkEI,ukEu,wa.ﬁl}

* In general, f € F is drawn from a distribution f ~ I

Luca Furieri Learning to optimize with guarantees ence, Thessaloniki, 24 June 2025

8

Problem Formulation

Goal: Evolve the performance of legacy algorithm = over instances f ~Dx...
...without losing worst-case guarantees over the entire family F .

Luca Furieri Learning to optimize with guarantees essaloniki, 24 June 2025 9

Problem Formulation

Goal: Evolve the performance of legacy algorithm = over instances f ~Dx...
...without losing worst-case guarantees over the entire family F .

= We design evolved algorithms in the form

Ee1 = m(&e) + v(&e0) enhancement term

, to be designed
legacy algorithm ensures

convergence/feasibility over F

T
= Algorithm performance for f ~ D'y measured as E;._p, [z o VF(E) 2 + v (&)

t=il

Luca Furieri Learning to optimize with guarantees , Thessaloniki, 24 June 2025 10

Scenarios we consider

Scenario Al'l: smooth nonconvex landscapes

4 min £(€))
convergence guarantee:
problem class: legacy algorithm: _
o _ asymptotic convergence to
fis B-smooth gradient descent stationary point
- J
Scenario BI2l: composite convex landscapes
4 . N
min f(£) + g()
tER?

] convergence guarantee:
problem class: legacy algorithm: _

f erated method linear convergence
4 are convex accelerated methods Eprs — E%] < p(t)tEq — €]

(e.g., heavy-ball, Nesterov...)

_ 9 IS nonsmooth

)

[1] A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», |IEEE Control Systems Letters, 2024.

[2] A. Martin, I. R. Manchester, and L. Furieri «Learning to optimize with guarantees: a complete characterization of linearly convergent
algorithms», ArXiV 2508.00775

Luca Furieri Learning to optimize with guarantees onference, Thessaloniki, 24 June 2025 11

Scenario A

Learning to optimize for smooth nonconvex landscapes

[11 A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», IEEE Control Systems Letters, 2024.

Luca Furieri Learning to optimize with guarantees aloniki, 24 June 2025 12

Main result 1: a separation principle for algorithms

Consider the iterations: £41 = & — gV f(&) + v

legacy algorithm: gradient desc@ l enhancement term
L

Luca Furieri Learning to optimize with guarantees Thessaloniki, 24 June 2025 13

Main result 1: a separation principle for algorithms

Consider the iterations: £41 = & — gV f(&) + v

legacy algorithm: gradient desc@ l enhancement term
L

f0<n<B87", and Y |u|® <oo,then B |Vf(&)]F <o
t=I

=i}

I:> Evolve gradient descent by designing a finite-energy sequence v:

Luca Furieri Learning to optimize with guarantees e, Thessaloniki, 24 June 2025 14

Main result 1: a separation principle for algorithms

Consider the iterations: £41 = & — gV f(&) + v

legacy algorithm: gradient desc@ l enhancement term
L

f0<n<B87", and Y |u|® <oo,then B |Vf(&)]F <o
t=I

=i}

I:> Evolve gradient descent by designing a finite-energy sequence v:

e =)

€ Needs proof: exponential stability with v: = 0 may not imply stability when Z |ve|* < ool]

t=I1

[11 H. K. Khaliland J. W. Grizzle. «Nonlinear systems (Vol. 3)» Upper Saddle River, NJ: Prentice hall, 2002

Luca Furieri Learning to optimize with guarantees ence, Thessaloniki, 24 June 2025 15

Main result 2: universality

Take any target algorithm &:11 = o:(£:.0) converging to a stationary point for all f € F,,.00h

The target algorithm &:+1 = o¢(£::0) is equivalent to

Eie1 = & — NV f(&) + ve(S, €o) (

for some sequence v:(f,&n) with finite energy.

3 e (f, €0)* < m)

=l

Proof insight

1. Construct the update rule wv(f,£0) matching the algori

2. Prove that Z|L=¢{J"",En]ll"E < 0O

f=10

Luca Furieri Learning to optimize with guarantees rence, Thessaloniki, 24 June 2025 16

Implications

Evolve gradient descent using automatic differentiation
while preserving convergence

T
min 7| allVAE)S + S (&)
fEExamples Li=0

subject to &1 = & — V(&) + ve([, £x0,6)
S

Neural-network parametrizations -+ (.’ PyTor'Ch

Samples fro

Luca Furieri Learning to optimize with guarantees

nce, Thessaloniki, 24 June 2025 18

How to evolve your convergent algorithm with neural networks

= Factorize v:(ér0,#) using two neural networks:

neural network 2: direction
(‘ trainable NN

ve(f, €e0) = 1e(€o, O)de(Eeo, flEr0), VI (Ee0), 0) :> stable nonlinear dynamics

& neural network 1: vanishing radius!}[2]

= We prove: the factorization above preserves universality

[1]1 M. Revay, R. Wang, and |I.R. Manchester, « Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness». IEEE
Transactions on Automatic Control, 2023
[2] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, S. De, «Resurrecting Recurrent Neural Networks for Long Sequences”, ICML, 2024

Luca Furieri Learning to optimize with guarantees erence, Thessaloniki, 24 June 2025 19

20

ion

[]
e, Thessaloniki, 24 June 2025

t
f(&o)

1Ca

classifier
prediction

Learning to optimize with guarantees

O~Amrwvs ~=o
ONcd w2 bhe N o
S =M NS NS T
sS—~Amebapers
O— M TSNP
Q=" mDF Vs~
A~a4mFeN e
QN O w9 O oo
DA >rPed g
ONAdeTwnY » o
N BMTWVL ~w o
V=P TwI [~wa
S~ nNn>bs ko
S=AMANInO N
Q="M ¥P0LS o
S=XMIT Y SR~

training a perceptron for image classif
n
€o

data and labels

Experiment

Luca Furieri

Experiment: training a perceptron for image classification

1) train the perceptron with an algorithm (fixed /)

data and labels

o]

Q ol
o 8 ol
Q g o .
o= o8 anrt

classifier
Tk (&)

—
prediction

000

C

A LW~
Aadentbi—-0
LI G eW PN -
D d e LUN -~
PN PP N N N
D~ NL W N
A I eV o WP N
SN FTwmLAyr -0
LRI FhRPND
29I NARL~D
e A R)
D NSPLhb~-0
Sefleneww=
DRI HYN WY -
LaNfnyQCWPND
PwuETALWP =0

Eevr = & — nVF (&) + re(bo, B)di(Ee0, f(Et0), V(Een),)

Luca Furieri Learning to optimize with guarantees ence, Thessaloniki, 24 June 2025 21

Experiment: training a perceptron for image classification

1) train the perceptron with an algorithm (fixed /)

@

saNangcwps0o)

S EALTWN ~Q

data and lab

(o]
AN

DY O WY -

= fagh = classifier
v o icti (&)
AN Rl prediction

A LW~
AaAaAdendtbi—-0
LI G eW PN -
D d e LUN -~
PN PP N N N
D~ NL W N
A I eV o WP N
SN LA -0
LRI FhRPND
29I NARL~D
DDA Rwrse —~ D
dNsOLh b —
LR B R

<9

0
=

Eevr = & — nVF (&) + re(bo, B)di(Ee0, f(Et0), V(Een),)

2) train the algorithm itself (train)
T
After training the classifier, evaluate AlgPerf(d) = Zamf[.f,jﬁ ++fl&) ...
t=il

... backpropagate through #

... then update #

erence, Thessaloniki, 24 June 2025 22

Learning to optimize with guarantees

Luca Furieri

Experiment: training a perceptron for image classification

1) train the perceptron with an algorithm (fixed /)

data and labels

000000002002 000

I A A I N B

2222932222222 A02 s .
2233333%5353333333 tanh 7, ClaSSIfler
A LA REEEERRRE > — . . (‘ft}
5558555855755 555s f W

L6 bblLbbboEsdGEG L ﬂ(; ' predlctlon
TI79277710TI2012F777 W

Y5 IwEEP L EPTTYLCE -

$99949%94949449 9

Eevr = & — nVF (&) + re(bo, B)di(Ee0, f(Et0), V(Een),)

2) train the algorithm itself (train)
T
After training the classifier, evaluate AlgPerf(d) = Zamf[.f,jﬁ ++fl&) ...
.. backpropagate through #

.. then update # 3) after training t/, compare with classical optimizers

onference, Thessaloniki, 24 June 2025 23

Learning to optimize with guarantees

Luca Furieri

Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu

—— Adam —— NAG - ConvergentL20

—— SGD —— RMSprop
1.0 m

T
290 300

— NAG - ConvergentL20 = Adam = NAG - ConvergentL20

30NN — seb — Rusprop

2.5

—— RMSprop

2.2 1.6

Loss

1.6

1.0 1

0 20 40 60 80 100
Optimization steps

40 60 80 100 0 20 40 60 80 100
Optimization steps Optimization steps

Out-of-sample generalization!

Luca Furieri Learning to optimize with guarantees saloniki, 24 June 2025 24

Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu

—— Adam —— NAG —— ConvergentL20 —— NAG — NAG

—— Adam —— Adam

25 - ConvergentL20 30N\ - ConvergentL20
' —— SGD —— RMSprop 29 —— SGD —— RMSprop 16 : \N ——— SGD —— RMSprop
10 {25
g 2;30 ZéO 300 %
0.5
10+ 1.6
0 2I0 4I0 6I0 8I0 100 0 2IO 4I0 6I0 8I0 100 0 2I0 4I0 6I0 8I0 100
Optimization steps Optimization steps Optimization steps
Q 0O
S P
Classifier test accuracy o S S
=& — V. + L9 :
Step t = 20 tanh sigmoid RelU §ev1 = & — VI (&) e N -
Adam 71.7 £5.1% 76.1 £3.1% 52.7 #11.1% O N\~
SGD 44.9 +42% 79.7 +1.9% 49.8 +9.3% ° ©
NAG 79.7 £1.4% 81.1 #1.5% 52.7 £10.2% , 8
RM Sprop 69.4 +2.9% 72.8 +2.3% 61.1 +#8.9% & o o
ConvergentL20 | 87.0 #0.5% 86.8 #0.6% 86.3 +0.6% = M
LSTM 822 +0.1% 83.3 £0.1% 883 £0.0% — » &41 =&+ & . -
Et‘-O
o}

Luca Furieri

Learning to optimize with guarantees

Thessaloniki, 24 June 2025

25

Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu

— NAG — NAG

—— Adam

—— Adam = ConvergentL20 —— Adam =—— NAG —— ConvergentL20 —— ConvergentL20

25 —— SGD —— RMSprop 29 —— SGD —— RMSprop 16 3.0 i \ ——— SGD —— RMSprop
o | B
g 2flso zslao 300 %
0.5
10+ 1.6
0 2I0 4I0 6I0 8I0 100 0 2IO 4I0 6I0 8IO 100 0 2I0 4I0 6I0 8I0 100
Optimization steps Optimization steps Optimization steps
Average norm of classifier parameters over iterations
—— Norm of weights (LSTM) //
10° { —— Norm of biases (LSTM)
Classifier test accuracy T o e o
Step t = 20 tanh sigmoid ReLU LSTM diverges
Adam 717 £51% 761 £3.1% 52.7 Z11.1% ue to lack of gu
SGD 44.9 +4.2% 79.7 +£1.9% 49.8 +9.3% H 7
NAG 79.7 £1.4% 81.1 £1.5% 52.7 £10.2%
RM Sprop 69.4 +£2.9% 72.8 +£2.3% 61.1 £8.9% e
ConvergentL20 | 87.0 £0.5% 86.8 £0.6% 86.3 £0.6%
LSTM 82.2 £0.1% 83.3 £0.1% 88.3 £0.0% 1°"/’_

Luca Furieri

0

Learning to optimize with guarantees

100

150
Iteration

200

250 300

Thessaloniki, 24 June 2025

26

Scenario B

Learning to evolve linearly convergent algorithms

[2] A. Martin, |. R. Manchester, and L. Furieri « Learning to optimize with guarantees: a complete characterization of linearly
convergent algorithms», ArXiV 2508.00775

Luca Furieri Learning to optimize with guarantees , Thessaloniki, 24 June 2025

27

Main result 1: evolving a contraction

(_\ monotonically linearly convergent:

Consider the iterations: &1 = w(f, &) + vt €nr —] < 4t|€ — €]

If [ve] < p(t)y", then [§e1 — €7[< a()7"[€0 — €7

|:> Evolve contracting algorithms by designing exponentially decaying v:

Luca Furieri Learning to optimize with guarantees

ce, Thessaloniki, 24 June 2025 28

Main result 1: evolving a contraction

(_\ monotonically linearly convergent:

Consider the iterations: &1 = w(f, &) + vt €01 — E*] < 1€ — £

If [ve] < p(t)y", then [€es1 — 7| < a(t)y"[€ — €7

|:> Evolve contracting algorithms by designing exponentially decaying v:

Main proof idea: study a perturbed scalar linear system

t—1 £—1
|6 — €| = de < 7o + Z Ylug—1—k| < v'da + Z'}'kp[t — 1 — k)ytik
k=0 k=0
1 t—1
< o (5n + Zp{k}) =|~'q(t)
T = Same rate 7, degree of p(t) +1
=0 \/

Luca Furieri Learning to optimize with guarantees ence, Thessaloniki, 24 June 2025 29

Main result 1: evolving non-monotonic accelerated algorithms

(_\ non-monotonically linearly convergent:

Consider the iterations: £iy1 = w(f, &) + v: €01 — E%| < rlt)ytE — €]

(e.g., Nesterov for strongly convex)

Let N € N be large enough to satisfy r(N)+™" < 1.
If [vel <p(t)y" is applied once every N _steps, then:

o1 — €1 < a®)(V/r(V)) Jeo - €

Luca Furieri Learning to optimize with guarantees ence, Thessaloniki, 24 June 2025 30

Main result 1: evolving non-monotonic accelerated algorithms

(_\ non-monotonically linearly convergent:

Consider the iterations: &1 = w(f, &) + vs €01 — EF| < Tt € — €7

(e.g., Nesterov for strongly convex)

Let N € N be large enough to satisfy (V)" < 1.
If [vel <p(t)y" is applied once every N _steps, then:

o1 — €71 < () (V/r(V)) Jeo — €71
O

trade-off: how often we inject v: vs worst-case convergence rate '"{/r[_-""."}“,r'

Main proof idea: the repeated legacy algorithm &1 = ?r“r{f= £:) remains monotonic...

Luca Furieri Learning to optimize with guarantees

erence, Thessaloniki, 24 June 2025 31

Main result 2: universality

Take any linearly convergent target algorithm £:1 = ¢(£&:.0) with rate

The target algorithm &:+1 = o¢(£::0) is equivalent to

Ervr = (f &) + vel f, &)

for some sequence v:(f, £r.0) with [ve] < p(t)y" if m(f, &) is monotonic and Lipschitz wrt &

Luca Furieri Learning to optimize with guarantees e, Thessaloniki, 24 June 2025 32

Main result 2: universality

Take any linearly convergent target algorithm £:1 = ¢(£&:.0) with rate

The target algorithm &:+1 = o¢(£::0) is equivalent to

Ervr = (f &) + vel f, &)

for some sequence v:(f, £r.0) with [ve] < p(t)y" if m(f, &) is monotonic and Lipschitz wrt &

Proof sketch

= The sequence v: achieving te same iterations as £i41 = g¢(€0) is

Uy = —Tflifa it] + ﬂt{rft:n] = —[W{f-. '-fi] - rft} + {Ht{ft;n] - ﬁt]

Luca Furieri Learning to optimize with guarantees nce, Thessaloniki, 24 June 2025 33

Main result 2: universality

Take any linearly convergent target algorithm £:1 = ¢(£&:.0) with rate

The target algorithm &:+1 = o¢(£::0) is equivalent to

Ervr = (f &) + vel f, &)

for some sequence v:(f, £r.0) with [ve] < p(t)y" if m(f, &) is monotonic and Lipschitz wrt &

Proof sketch

= The sequence v: achieving te same iterations as £i41 = g¢(€0) is

vy = _Tﬂif:- ':f,] + Ut{rft:n] = —[W{f-. £t) — rft} + {Ht{ft;n] - ﬁt]

[m(fs&e) — &| < (Lx + 1) — £7|

. . t
vanishes with 7
Luca Furieri Learning to optimize with guarantees ence, Thessaloniki, 24 June 2025 34

Main result 2: universality

Take any linearly convergent target algorithm £:1 = ¢(£&:.0) with rate

The target algorithm &:+1 = o¢(£::0) is equivalent to

Ervr = (f &) + vel f, &)

for some sequence v:(f, &.0) with [ve| < p(t)y" if w(f,&:) is monotonic and Lipschitz wrt &

Proof sketch

= The sequence v: achieving te same iterations as £i41 = g¢(€0) is

vy = _Tﬂif:- ':f,] + Ut{rft:n] = —[W{f-. £t) — rft} + {Ht{ft:n] - ﬁt]

[m(fi &) — &:| < (Lx +1)|& — &7 Et41 — &
vanishes with 7° vanishes with v* by assumption
B o e oy e Ly opean Control Conference, Thessaloniki, 24 June 2025 35

Main result 2: universality

Take any linearly convergent target algorithm £:1 = ¢(£&:.0) with rate

The target algorithm &:+1 = o¢(£::0) is equivalent to

Eiv1 =m(f, &) + v

for some sequence v nic and Lipschitz wrt &:

Many 1692y @

— —m[f, — &) + 'I:H:'I:Et::}] - 5:]
- |
[m(f, &) — &l < (Lr +1)|§ — &7 Eip1 — &
vanishes with 7° vanishes with v* by assumption

Luca Furieri Learning to optimize with guarantees erence, Thessaloniki, 24 June 2025 36

Examples of compatible problems: unconstrained

4 min f(£) I

£eR
problem class: legacy algorithm: convergence guarantees:
f is strongly convex heavy-ball, Nesterov, preserves linear convergence
J is smooth accelerated methods of [1], [2] Eip1 = m(f,E) + v

/

[1]1L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021

Luca Furieri Learning to optimize with guarantees erence, Thessaloniki, 24 June 2025 37

Examples of compatible problems: unconstrained

- ~ N
min f(¢)
problem class: legacy algorithm: convergence guarantees:
[is strongly convex heavy-ball, Nesterov, preserves linear convergence
J is smooth accelerated methods of [1], [2] Eip1 = m(f,E) + v Y
4 min f(€) + g(€) R
£cR?
problem class: legacy algorithm: convergence guarantees:
f is strongly convex proximal gradient descent all linearly convergent algorithms

_q' is convex, nonsmooth (f,&) = prox, (& — nVf(&)) Eev1r = w(f. &) +ve(f, €o))

[1]1L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021

Luca Furieri Learning to optimize with guarantees nference, Thessaloniki, 24 June 2025 38

Examples of compatible problems: constrained

/ min f() \

subject to A£ < b

problem class: legacy algorithm: convergence guarantees:
f is strongly convex proximal gradient descent all linearly convergent algorithms
K m(f,&) = projz(& —nVf(&)) S =7l &) +ulf, Enjj

feasibility only upon convergence...

Luca Furieri Learning to optimize with guarantees rence, Thessaloniki, 24 June 2025 39

Examples of compatible problems: constrained

/ min f(£) \
(ERT
subject to A£ < b

problem class: legacy algorithm: convergence guarantees:
f is strongly convex proximal gradient descent all linearly convergent algorithms

w(f, &) = proj=(& — nVf (&) o1 = m(f, &) +ve(f, €o)

guarantees if Av; < 0:
all linearly convergent algorithms

'££+1 — ﬂ_{f:- ‘f’ﬁ) + T"'.tl::f:- '-EU:]
K with feasible iterates &; € = /

nce, Thessaloniki, 24 June 2025 40

Luca Furieri Learning to optimize with guarantees

Experiment: solving hard systems of linear equations

I min Af — by)? (A, b;) ~ Gaussian(0.5,0.04)
10 L slow convergence speed whenx(4" 4) is large
: o ...in this example x(AT A) ~ 18.7M
- 1 0.0 22
— GD
- |_0'5 20
18 ~

10 4

T T T T T T
0 2000 4000 6000 8000 10000
teration
rence, Thessaloniki, 24 June 2025

Luca Furieri Learning to optimize with guarantees

41

Experiment: solving hard systems of linear equations

leB

I uEi.u Af — by (A, b;) ~ Gaussian((.5,0.04)

10 L slow convergence speed whenx(4" 4) is large

-05

...in this example x(AT A) ~ 18.7M

I - G = MNaG = Durs (augmented N&G)
—0.5

20
15 10 - T
Train v¢(&:.0) to evolve NAG... .
- o

improved transient .

Loss

same asymptotic
rate as NAG

behavior 0 2000 4000 6000 BOOO 10000
Optimization steps

Luca Furieri Learning to optimize with guarantees ce, Thessaloniki, 24 June 2025 42

Conclusions

= A characterization of all asymptotically (A) and linearly convergent (B) algorithms
= legacy algorithm as a base policy + nonlinear dynamic updates

Neural-network based evolution of classical algorithms

Luca Furieri Learning to optimize with guarantees rence, Thessaloniki, 24 June 2025 43

Conclusions

= A characterization of all asympftotically (A) and linearly convergent (B) algorithms
= legacy algorithm as a base policy + nonlinear dynamic updates

Neural-network based evolution of classical algorithms

Future work

= Performance generalization guarantees!'!
= Impact on Model Predictive Control (e.g., evolve IPOPT, OSQP...)
= |Inverse design, e.q.: «for which control cost is NAG optimal?

[11 R. Sambharya, B. Stellato, “Data-Driven Performance Guarantees for Classical and Leamed Optimizers”, [ArXiV, 2024]

Luca Furieri Learning to optimize with guarantees Conference, Thessaloniki, 24 June 2025 44

	Default Section
	Slide 1
	Slide 2: Algorithm design

	Background
	Slide 3: Systems theory for analytical algorithm design
	Slide 4: Systems theory for analytical algorithm design
	Slide 5: Machine learning for algorithm design
	Slide 6: Machine learning for algorithm design
	Slide 7: Problem Formulation
	Slide 8: Problem Formulation
	Slide 9: Problem Formulation
	Slide 10: Problem Formulation
	Slide 11: Scenarios we consider

	Scenario A
	Slide 12
	Slide 13: Main result 1: a separation principle for algorithms
	Slide 14: Main result 1: a separation principle for algorithms
	Slide 15: Main result 1: a separation principle for algorithms
	Slide 16: Main result 2: universality
	Slide 18: Implications
	Slide 19: How to evolve your convergent algorithm with neural networks
	Slide 20: Experiment: training a perceptron for image classification
	Slide 21: Experiment: training a perceptron for image classification
	Slide 22: Experiment: training a perceptron for image classification
	Slide 23: Experiment: training a perceptron for image classification
	Slide 24: Experiment: training a perceptron for image classification
	Slide 25: Experiment: training a perceptron for image classification
	Slide 26: Experiment: training a perceptron for image classification

	Scenario B
	Slide 27
	Slide 28: Main result 1: evolving a contraction
	Slide 29: Main result 1: evolving a contraction
	Slide 30: Main result 1: evolving non-monotonic accelerated algorithms
	Slide 31: Main result 1: evolving non-monotonic accelerated algorithms
	Slide 32: Main result 2: universality
	Slide 33: Main result 2: universality
	Slide 34: Main result 2: universality
	Slide 35: Main result 2: universality
	Slide 36: Main result 2: universality
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Examples of compatible problems: constrained

	Implementation
	Slide 41: Experiment: solving hard systems of linear equations
	Slide 42: Experiment: solving hard systems of linear equations
	Slide 43: Conclusions
	Slide 44: Conclusions

