Learning to optimize: convergence guarantees from convex to nonconvex landscapes

Luca Furieri

Joint work with Andrea Martin and Ian R. Manchester

[1] A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», IEEE Control Systems Letters, 2024.

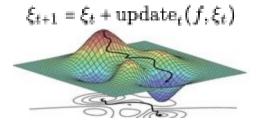
[2] A. Martin, I. R. Manchester, and L. Furieri «Learning to optimize with guarantees: a complete characterization of linearly convergent algorithms», ArXiV 2508.00775

Algorithm design

Optimization program

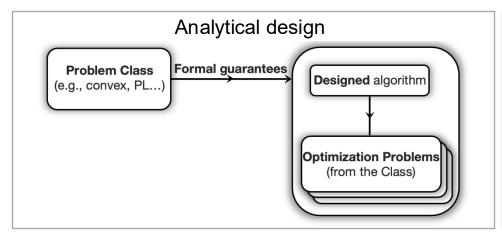
$$\xi^{\star} = \operatorname{argmin}_{\xi \in \Xi} f(\xi)$$

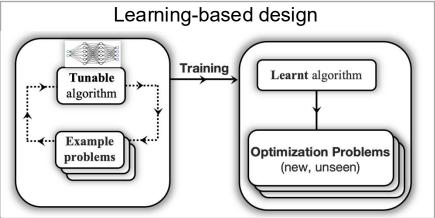
Iterative optimization algorithm



Algorithm requirements:

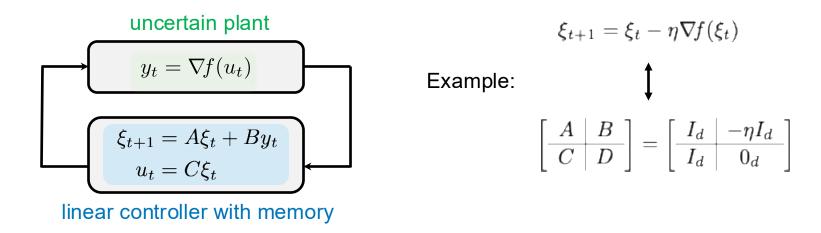
- 1. Convergence and feasible iterates
- **2. Speed**: find stationary point in few steps
- **3. Quality**: find low-cost stationary point





Systems theory for analytical algorithm design

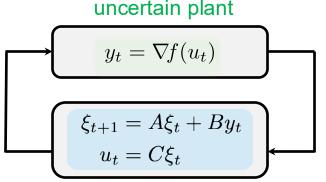
Classical optimization algorithms (gradient descent, accelerated...) as Lure's systems



[1] L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016 [2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021

Systems theory for analytical algorithm design

Classical optimization algorithms (gradient descent, accelerated...) as Lure's systems



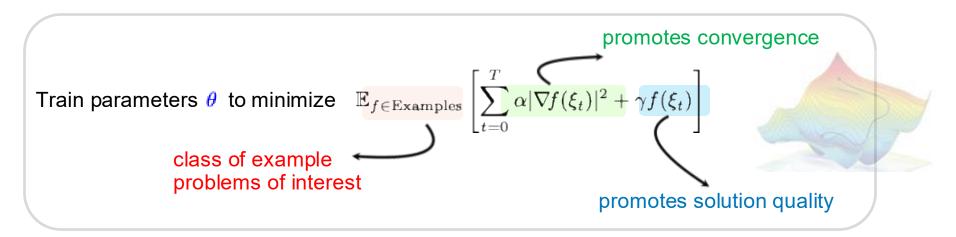
- Design of new algorithms, i.e., matrices (A,B,C)...
 - ...leveraging IQCs and robust control theory^{[1],[2]}

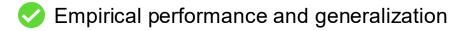
linear controller with memory

[1] L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016 [2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021

Machine learning for algorithm design

Idea: let a neural network guide the algorithm updates \longrightarrow $\xi_{t+1} = \xi_t +$





[1] M. Andrychowiz..., N. De Freitas. «Learning to learn by gradient descent by gradient descent». NeurIPS, 2016.

[2] K. Li. and J. Malik. «Learning to optimize». ICLR, 2016

Machine learning for algorithm design

Idea: let a neural network guide the algorithm updates \longrightarrow $\xi_{t+1} = \xi_t + 3$

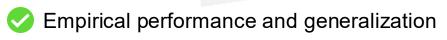
Train parameters θ

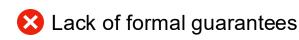
class proble

Today's focus

exploit flexibility of learned updates...

...while preserving convergence and feasibility guarantees promotes solution quality





[1] M. Andrychowiz..., N. De Freitas. «Learning to learn by gradient descent by gradient descent». NeurIPS, 2016.

[2] K. Li. and J. Malik. «Learning to optimize». ICLR, 2016

- Let F be a family of objective functions (convex, smooth, PL...)
- Let π be a legacy algorithm $\xi_{t+1} = \pi(\xi_{t:0})$ to optimize any function $f \in \mathcal{F}$

- Let F be a family of objective functions (convex, smooth, PL...)
- Let π be a legacy algorithm $\xi_{t+1} = \pi(\xi_{t:0})$ to optimize any function $f \in \mathcal{F}$
- Some objective functions are more frequent than others... e.g. MPC

$$\min_{\substack{u_0, \dots, u_{N-1} \\ \text{subject to } \mathbf{x}_0 = \mathbf{x}_t, \ x_{k+1} = A\mathbf{x}_k + Bu_k \\ x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ x_N \in \mathcal{X}_f}} \sum_{k=0}^{N-1} x_k^\top Q x_k + u_k^\top R u_k + x_N^\top Q x_N$$

$$\xi = (u_0, u_1, \dots, u_N)$$

$$\xi = (u_0, u_1, \dots, u_N)$$
subject to $\xi \in \mathcal{C}(\mathbf{x}_0)$

$$\xi = (u_0, u_1, \dots, u_N)$$

$$\min_{\xi} \quad \xi^{\top} G \xi + b^{\top}(x_0) \xi$$
subject to $\xi \in \mathcal{C}(x_0)$

• In general, $f \in \mathcal{F}$ is drawn from a distribution $f \sim \mathbb{D}_{\mathcal{F}}$

Goal: Evolve the performance of legacy algorithm π over instances $f \sim \mathbb{D}_{\mathcal{F}} \dots$...without losing worst-case guarantees over the entire family \mathcal{F} .

Goal: Evolve the performance of legacy algorithm π over instances $f \sim \mathbb{D}_{\mathcal{F}}$... without losing worst-case guarantees over the entire family \mathcal{F} .

We design evolved algorithms in the form

 $\xi_{t+1} = \pi(\xi_t) + v(\xi_{t:0})$ enhancement term to be designed convergence/feasibility over ${\mathcal F}$

 $\blacksquare \text{ Algorithm performance for } f \sim \mathbb{D}_{\mathcal{F}} \text{ measured as } \mathbb{E}_{f \sim \mathbb{D}_{\mathcal{F}}} \left[\sum_{t=0}^T \alpha |\nabla f(\xi_t)|^2 + \gamma f(\xi_t) \right]$

Scenarios we consider

Scenario A^[1]: smooth nonconvex landscapes

$$\min_{\xi \in \mathbb{R}^d} f(\xi)$$

problem class:

f is β -smooth

legacy algorithm:

gradient descent

convergence guarantee:

asymptotic convergence to stationary point

Scenario B^[2]: composite convex landscapes

$$\min_{\xi \in \mathbb{R}^d} f(\xi) + g(\xi)$$

problem class:

f,g are convex

g is nonsmooth

legacy algorithm:

accelerated methods (e.g., heavy-ball, Nesterov...)

convergence guarantee:

linear convergence

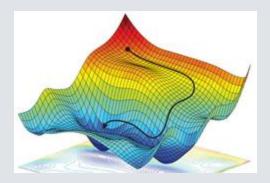
$$|\xi_{t+1} - \xi^{\star}| \le p(t)\gamma^t |\xi_0 - \xi^{\star}|$$

^[1] A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», IEEE Control Systems Letters, 2024.

^[2] A. Martin, I. R. Manchester, and L. Furieri «Learning to optimize with guarantees: a complete characterization of linearly convergent algorithms», ArXiV 2508.00775

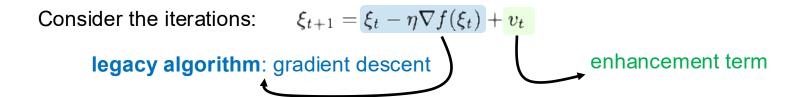
Scenario A

Learning to optimize for smooth nonconvex landscapes



[1] A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», IEEE Control Systems Letters, 2024.

Main result 1: a separation principle for algorithms



Main result 1: a separation principle for algorithms

Consider the iterations: $\xi_{t+1} = \xi_t - \eta \nabla f(\xi_t) + v_t$ legacy algorithm: gradient descent enhancement term

If
$$0<\eta , and $\sum_{t=0}^\infty |v_t|^2<\infty$, then $\sum_{t=0}^\infty |
abla f(\xi_t)|^2<\infty$$$

 $igspace{}$ Evolve gradient descent by designing a finite-energy sequence v_t

Main result 1: a separation principle for algorithms

Consider the iterations: $\xi_{t+1} = \xi_t - \eta \nabla f(\xi_t) + v_t$ legacy algorithm: gradient descent enhancement term

If
$$0<\eta , and $\sum_{t=0}^\infty |v_t|^2<\infty$, then $\sum_{t=0}^\infty |
abla f(\xi_t)|^2<\infty$$$

 \square Evolve gradient descent by designing a finite-energy sequence v_t

Needs proof: exponential stability with $|v_t=0|$ may not imply stability when $\sum_{t=0}^\infty |v_t|^2 < \infty$ [1]

[1] H. K. Khalil and J. W. Grizzle. «Nonlinear systems (Vol. 3)» Upper Saddle River, NJ: Prentice hall, 2002

Take any target algorithm $\xi_{t+1} = \sigma_t(\xi_{t:0})$ converging to a stationary point for all $f \in \mathcal{F}_{smooth}$

The target algorithm $\xi_{t+1} = \sigma_t(\xi_{t:0})$ is equivalent to

$$\xi_{t+1} = \xi_t - \eta \nabla f(\xi_t) + v_t(f, \xi_0)$$

for some sequence $v_t(f,\xi_0)$ with finite energy.

$$\left(\sum_{t=0}^{\infty}|v_t(f,\xi_0)|^2<\infty
ight)$$

Proof insight

- 2. Prove that $\sum_{t=0}^{\infty} |v_t(f,\xi_0)|^2 < \infty$ Akin to Youla and System Level Synthesis (SLS) for algorithm design

Implications

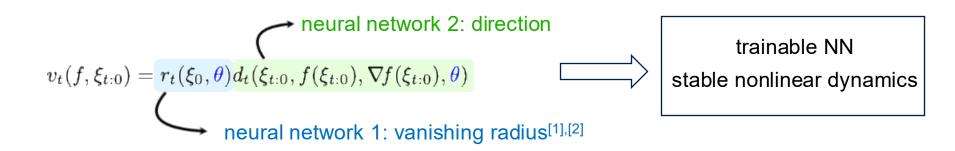
Evolve gradient descent using automatic differentiation while preserving convergence

$$\min_{\theta \in \mathbb{R}^n} \sum_{f \in \text{Examples}} \left[\sum_{t=0}^T \alpha \|\nabla f(\xi_t)\|_2^2 + \gamma f(\xi_t) \right]$$
subject to $\xi_{t+1} = \xi_t - \eta \nabla f(\xi_t) + v_t(f, \xi_{t:0}, \theta)$

Neural-network parametrizations + OPyTorch

How to evolve your convergent algorithm with neural networks

• Factorize $v_t(\xi_{t:0}, \theta)$ using two neural networks:

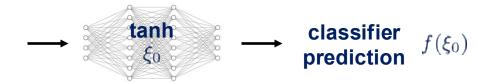


We prove: the factorization above preserves universality

^[1] M. Revay, R. Wang, and I.R. Manchester, «Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness». IEEE Transactions on Automatic Control, 2023

^[2] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, S. De, «Resurrecting Recurrent Neural Networks for Long Sequences", ICML, 2024

data and labels



1) train the perceptron with an algorithm (fixed θ)

data and labels

$$\xi_{t+1} = \xi_t - \eta \nabla f(\xi_t) + r_t(\xi_0, \theta) d_t(\xi_{t:0}, f(\xi_{t:0}), \nabla f(\xi_{t:0}), \theta)$$

1) train the perceptron with an algorithm (fixed θ)

data and labels



$$\xi_{t+1} = \xi_t - \eta \nabla f(\xi_t) + r_t(\xi_0, \theta) d_t(\xi_{t:0}, f(\xi_{t:0}), \nabla f(\xi_{t:0}), \theta)$$

2) train the algorithm itself (train θ)

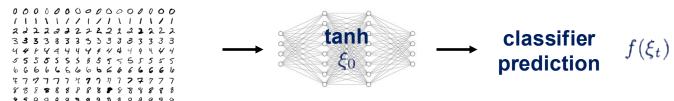
After training the classifier, evaluate $\operatorname{AlgPerf}(\theta) = \sum_{t=0}^T \alpha |\nabla f(\xi_t)|^2 + \gamma f(\xi_t)$...

... backpropagate through 🛭

... then update θ

1) train the perceptron with an algorithm (fixed θ)

data and labels



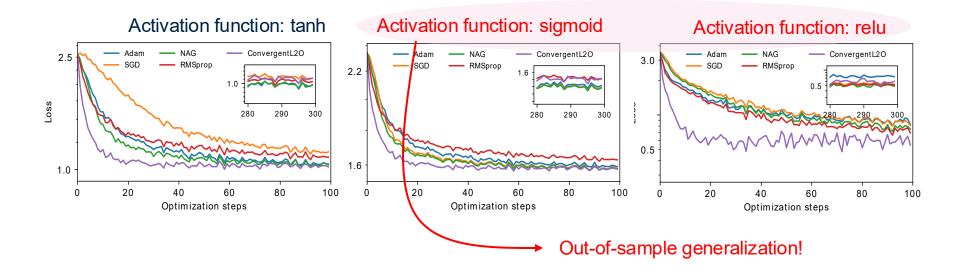
$$\xi_{t+1} = \xi_t - \eta \nabla f(\xi_t) + r_t(\xi_0, \theta) d_t(\xi_{t:0}, f(\xi_{t:0}), \nabla f(\xi_{t:0}), \theta)$$

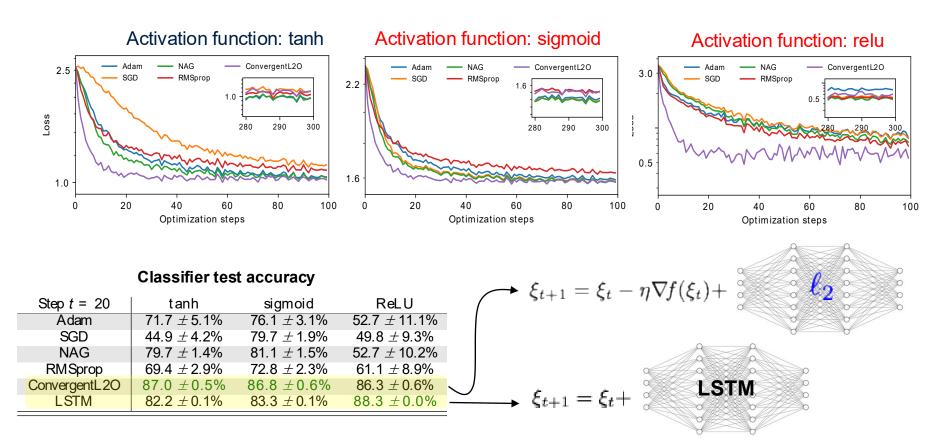
2) train the algorithm itself (train θ)

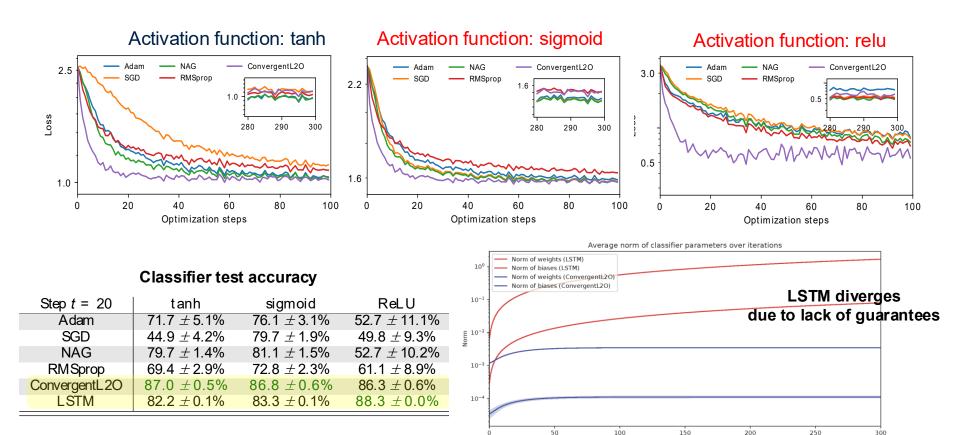
After training the classifier, evaluate $\operatorname{AlgPerf}(\theta) = \sum_{t=0}^T \alpha |\nabla f(\xi_t)|^2 + \gamma f(\xi_t)$...

- ... backpropagate through 9
- ... then update θ

3) after training θ , compare with classical optimizers



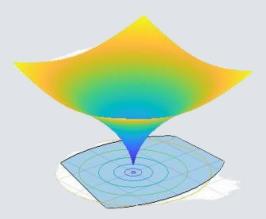




Iteration

Scenario B

Learning to evolve linearly convergent algorithms



[2] A. Martin, I. R. Manchester, and L. Furieri «Learning to optimize with guarantees: a complete characterization of linearly convergent algorithms», ArXiV 2508.00775

Main result 1: evolving a contraction

monotonically linearly convergent:

Consider the iterations:
$$\xi_{t+1} = \pi(f, \xi_t) + v_t$$
 $|\xi_{t+1} - \xi^*| \leq \gamma^t |\xi_0 - \xi^*|$

$$|\xi_{t+1} - \xi^{\star}| \le \gamma^t |\xi_0 - \xi^{\star}|$$

If
$$|v_t| \leq p(t)\gamma^t$$
, then $|\xi_{t+1} - \xi^\star| \leq q(t)\gamma^t |\xi_0 - \xi^\star|$

Evolve contracting algorithms by designing exponentially decaying v_t

Main result 1: evolving a contraction

monotonically linearly convergent:

Consider the iterations:
$$\xi_{t+1} = \pi(f, \xi_t) + v_t$$

$$|\xi_{t+1} - \xi^*| \le \gamma^t |\xi_0 - \xi^*|$$

If
$$|v_t| \leq p(t)\gamma^t$$
, then $|\xi_{t+1} - \xi^\star| \leq q(t)\gamma^t |\xi_0 - \xi^\star|$

Evolve contracting algorithms by designing exponentially decaying v_t

Main proof idea: study a perturbed scalar linear system

$$\begin{split} |\xi_t - \xi^\star| &= \delta_t \leq \gamma^t \delta_0 + \sum_{k=0}^{t-1} \gamma^k |v_{t-1-k}| \leq \gamma^t \delta_0 + \sum_{k=0}^{t-1} \gamma^k p(t-1-k) \gamma^{t-1-k} \\ &\leq \gamma^t \left(\delta_0 + \frac{1}{\gamma} \sum_{k=0}^{t-1} p(k)\right) = \boxed{\gamma^t q(t)} \end{split} \qquad \text{Same rate } \gamma \text{ , degree of } p(t) \text{ +1} \end{split}$$

Main result 1: evolving non-monotonic accelerated algorithms

non-monotonically linearly convergent:

Consider the iterations:
$$\xi_{t+1} = \pi(f, \xi_t) + v_t$$

$$|\xi_{t+1} - \xi^\star| \leq r(t)\gamma^t |\xi_0 - \xi^\star|$$

(e.g., Nesterov for strongly convex)

Let $N \in \mathbb{N}$ be large enough to satisfy $r(N)\gamma^N < 1$. If $|v_t| \leq p(t)\gamma^t$ is applied once every N steps, then:

$$|\xi_{t+1} - \xi^{\star}| \leq q(t) \left(\sqrt[N]{r(N)}\gamma\right)^t |\xi_0 - \xi^{\star}|$$

Main result 1: evolving non-monotonic accelerated algorithms

non-monotonically linearly convergent:

Consider the iterations: $\xi_{t+1} = \pi(f, \xi_t) + v_t$

$$\xi_{t+1} = \pi(f, \xi_t) + v_t$$

 $|\xi_{t+1} - \xi^\star| \leq r(t) \gamma^t |\xi_0 - \xi^\star|$

(e.g., Nesterov for strongly convex)

Let $N \in \mathbb{N}$ be large enough to satisfy $r(N)\gamma^N < 1$. If $|v_t| \leq p(t)\gamma^t$ is applied once every N steps, then:

$$|\xi_{t+1} - \xi^*| \le q(t) \left(\sqrt[N]{r(N)}\gamma\right)^t |\xi_0 - \xi^*|$$

trade-off: how often we inject v_t vs worst-case convergence rate $\sqrt[N]{r(N)\gamma}$

Main proof idea: the repeated legacy algorithm $\xi_{t+1} = \pi^N(f, \xi_t)$ remains monotonic...

Take any linearly convergent target algorithm $\xi_{t+1} = \sigma_t(\xi_{t:0})$ with rate γ

The target algorithm $\xi_{t+1} = \sigma_t(\xi_{t:0})$ is equivalent to

$$\xi_{t+1} = \pi(f, \xi_t) + v_t(f, \xi_{t:0})$$

for some sequence $v_t(f, \xi_{t:0})$ with $|v_t| \leq p(t)\gamma^t$ if $\pi(f, \xi_t)$ is monotonic and Lipschitz wrt ξ_t

Take any linearly convergent target algorithm $\xi_{t+1} = \sigma_t(\xi_{t:0})$ with rate γ

The target algorithm $\xi_{t+1} = \sigma_t(\xi_{t:0})$ is equivalent to

$$\xi_{t+1} = \pi(f, \xi_t) + v_t(f, \xi_{t:0})$$

for some sequence $v_t(f, \xi_{t:0})$ with $|v_t| \leq p(t)\gamma^t$ if $\pi(f, \xi_t)$ is monotonic and Lipschitz wrt ξ_t

Proof sketch

• The sequence v_t achieving te same iterations as $\xi_{t+1} = \sigma_t(\xi_{t:0})$ is

$$v_t = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) = -(\pi(f, \xi_t) - \xi_t) + (\sigma_t(\xi_{t:0}) - \xi_t)$$

Take any linearly convergent target algorithm $\xi_{t+1} = \sigma_t(\xi_{t:0})$ with rate γ

The target algorithm $\xi_{t+1} = \sigma_t(\xi_{t:0})$ is equivalent to

$$\xi_{t+1} = \pi(f, \xi_t) + v_t(f, \xi_{t:0})$$

for some sequence $v_t(f, \xi_{t:0})$ with $|v_t| \leq p(t)\gamma^t$ if $\pi(f, \xi_t)$ is monotonic and Lipschitz wrt ξ_t

Proof sketch

• The sequence v_t achieving te same iterations as $\xi_{t+1} = \sigma_t(\xi_{t:0})$ is

$$v_t = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) = -(\pi(f, \xi_t) - \xi_t) + (\sigma_t(\xi_{t:0}) - \xi_t)$$
 $|\pi(f, \xi_t) - \xi_t| \le (L_\pi + 1)|\xi_t - \xi^\star|$
vanishes with γ^t

Take any linearly convergent target algorithm $\xi_{t+1} = \sigma_t(\xi_{t:0})$ with rate γ

The target algorithm $\xi_{t+1} = \sigma_t(\xi_{t:0})$ is equivalent to

$$\xi_{t+1} = \pi(f, \xi_t) + v_t(f, \xi_{t:0})$$

for some sequence $v_t(f, \xi_{t:0})$ with $|v_t| \leq p(t)\gamma^t$ if $\pi(f, \xi_t)$ is monotonic and Lipschitz wrt ξ_t

Proof sketch

• The sequence v_t achieving te same iterations as $\xi_{t+1} = \sigma_t(\xi_{t:0})$ is

$$v_t = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) = -(\pi(f, \xi_t) - \xi_t) + (\sigma_t(\xi_{t:0}) - \xi_t)$$

$$|\pi(f, \xi_t) - \xi_t| \leq \frac{(L_{\pi} + 1)|\xi_t - \xi^{\star}|}{(L_{\pi} + 1)|\xi_t - \xi^{\star}|}$$

$$\forall x = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) - \xi_t$$

$$|\xi_{t+1} - \xi_t|$$

$$\forall x = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) - \xi_t$$

$$|\xi_{t+1} - \xi_t|$$

$$\forall x = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) - \xi_t$$

$$\forall x = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) - \xi_t$$

$$\forall x = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) - \xi_t$$

$$\forall x = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) - \xi_t$$

$$\forall x = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) - \xi_t$$

$$\forall x = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) - \xi_t$$

$$\forall x = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) - \xi_t$$

$$\forall x = -\pi(f, \xi_t) + \sigma_t(\xi_{t:0}) - \xi_t$$

$$\forall x = -\pi(f, \xi_t) + \sigma_t(\xi_t) + \sigma_t(\xi_t) + \sigma_t(\xi_t) + \sigma_t(\xi_t) + \sigma_t(\xi_t)$$

$$\forall x = -\pi(f, \xi_t) + \sigma_t(\xi_t) + \sigma_t(\xi_t)$$

Take any linearly convergent target algorithm $\xi_{t+1} = \sigma_t(\xi_{t:0})$ with rate γ

The target algorithm $\xi_{t+1} = \sigma_t(\xi_{t:0})$ is equivalent to

$$\xi_{t+1} = \pi(f, \xi_t) + v_t(f, \xi_t)$$

Many legacy algorithms are Lipschitz wrt ξ_t for some sequence v_t

nic and Lipschitz wrt ξ_t

The sequence v_t

$$v_t = -\pi(f, d)$$

 Nesterov, heavy-ball, triple-momentum... Gradient descent...

$$|\pi(f,\xi_t)-\xi_t| \leq (\underline{L_{\pi}+1})|\xi_t-\xi^{\star}|$$

vanishes with γ^t

$$\xi_{t+1} - \xi_t$$

vanishes with γ^t by assumption

Examples of compatible problems: unconstrained

$$\min_{\xi \in \mathbb{R}^d} f(\xi)$$

problem class:

f is strongly convex f is smooth

legacy algorithm:

heavy-ball, Nesterov, accelerated methods of [1], [2]

convergence guarantees:

preserves linear convergence

$$\xi_{t+1} = \pi(f, \xi_t) + v_t$$

[1] L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016 [2] C. Scherer, C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021

Examples of compatible problems: unconstrained

$$\min_{\xi \in \mathbb{R}^d} f(\xi)$$

problem class:

f is strongly convex f is smooth

legacy algorithm:

heavy-ball, Nesterov, accelerated methods of [1], [2]

convergence guarantees:

preserves linear convergence $\xi_{t+1} = \pi(f, \xi_t) + v_t$

$$\min_{\xi \in \mathbb{R}^d} f(\xi) + g(\xi)$$

problem class:

f is strongly convex g is convex, nonsmooth

legacy algorithm:

proximal gradient descent $\pi(f, \xi_t) = \operatorname{prox}_g(\xi_t - \eta \nabla f(\xi_t))$

convergence guarantees:

all linearly convergent algorithms $\xi_{t+1} = \pi(f, \xi_t) + v_t(f, \xi_0)$

[1] L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

Examples of compatible problems: constrained

$$\min_{\xi \in \mathbb{R}^d} f(\xi)$$

subject to $A\xi < b$

problem class:

f is strongly convex

legacy algorithm:

proximal gradient descent

 $\pi(f, \xi_t) = \operatorname{proj}_{\Xi}(\xi_t - \eta \nabla f(\xi_t))$

convergence guarantees:

all linearly convergent algorithms

$$\xi_{t+1} = \pi(f, \xi_t) + v_t(f, \xi_0)$$

feasibility only upon convergence...

Examples of compatible problems: constrained

$$\min_{\xi \in \mathbb{R}^d} f(\xi)$$

subject to $A\xi < b$

problem class:

f is strongly convex

legacy algorithm:

proximal gradient descent

$$\pi(f, \xi_t) = \operatorname{proj}_{\Xi}(\xi_t - \eta \nabla f(\xi_t))$$

convergence guarantees:

all linearly convergent algorithms

$$\xi_{t+1} = \pi(f, \xi_t) + v_t(f, \xi_0)$$

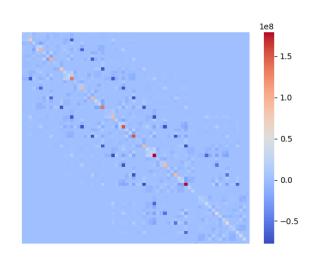
guarantees if $Av_t \leq 0$:

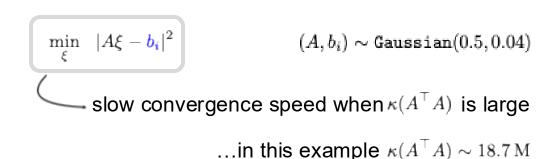
all linearly convergent algorithms

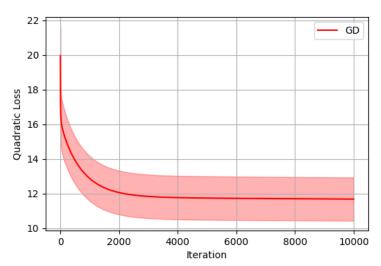
$$\xi_{t+1} = \pi(f, \xi_t) + v_t(f, \xi_0)$$

with feasible iterates $\xi_t \in \Xi$

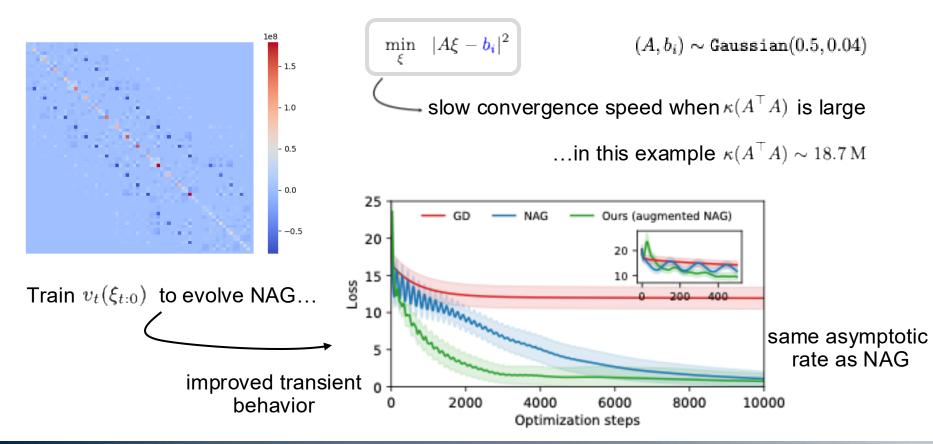
Experiment: solving hard systems of linear equations







Experiment: solving hard systems of linear equations



Conclusions

- A characterization of all asymptotically (A) and linearly convergent (B) algorithms
 - legacy algorithm as a base policy + nonlinear dynamic updates

Neural-network based evolution of classical algorithms

Conclusions

- A characterization of all asymptotically (A) and linearly convergent (B) algorithms
 - legacy algorithm as a base policy + nonlinear dynamic updates

Neural-network based evolution of classical algorithms

Future work

- Performance generalization guarantees^[1]
- Impact on Model Predictive Control (e.g., evolve IPOPT, OSQP...)
- Inverse design, e.g.: «for which control cost is NAG optimal?

[1] R. Sambharya, B. Stellato, "Data-Driven Performance Guarantees for Classical and Learned Optimizers", [ArXiV, 2024]