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Learning to optimize: convergence guarantees
from convex to nonconvex landscapes

Luca Furieri

Joint work with Andrea Martin and Ian R. Manchester

[2] A. Martin, I. R. Manchester, and L. Furieri «Learning to optimize with guarantees: a complete characterization of linearly convergent 
algorithms»,   ArXiV 2508.00775

[1] A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», IEEE Control Systems Letters, 2024.
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Algorithm design

1. Convergence and feasible iterates

2. Speed: find stationary point in few steps

3. Quality: find low-cost stationary point

Iterative optimization algorithmOptimization program Algorithm requirements:

Learning-based designAnalytical design
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Systems theory for analytical algorithm design

Classical optimization algorithms (gradient descent, accelerated…) as Lure’s systems

Example:

uncertain plant

linear controller with memory

[1] L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer,  C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021
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Systems theory for analytical algorithm design

[1] L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

Classical optimization algorithms (gradient descent, accelerated…) as Lure’s systems

uncertain plant

linear controller with memory

▪ Design of new algorithms, i.e., matrices (A,B,C)… 

▪ …leveraging IQCs and robust control theory[1],[2]

Optimal worst-case convergence rates Limited to convex objective functions

[2] C. Scherer,  C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021
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Machine learning for algorithm design

Idea: let a neural network guide the algorithm updates

[1] M. Andrychowiz..., N. De Freitas. «Learning to learn by gradient descent by gradient descent». NeurIPS, 2016.

[2] K. Li. and J. Malik. «Learning to optimize». ICLR, 2016

Empirical performance and generalization Lack of formal guarantees

Train parameters     to minimize  

promotes solution quality 

class of example 
problems of interest

promotes convergence
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Train parameters     to minimize  

promotes solution quality 

class of example 
problems of interest

promotes convergence

Machine learning for algorithm design

Idea: let a neural network guide the algorithm updates

Empirical performance and generalization Lack of formal guarantees

[1] M. Andrychowiz..., N. De Freitas. «Learning to learn by gradient descent by gradient descent». NeurIPS, 2016.

[2] K. Li. and J. Malik. «Learning to optimize». ICLR, 2016
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▪ Let be a family of objective functions (convex, smooth, PL…)

▪ Let be a legacy algorithm to optimize any function

Problem Formulation
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▪ Let be a family of objective functions (convex, smooth, PL…)

▪ Let be a legacy algorithm to optimize any function

▪ Some objective functions are more frequent than others… e.g. MPC

▪ In general,             is drawn from a distribution

Problem Formulation
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Problem Formulation

Goal: Evolve the performance of legacy algorithm over instances             … 

…without losing worst-case guarantees over the entire family     .
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▪ We design evolved algorithms in the form

▪ Algorithm performance for               measured as

Problem Formulation

Goal: Evolve the performance of legacy algorithm over instances             … 

…without losing worst-case guarantees over the entire family     .

enhancement term 
to be designed 

legacy algorithm ensures 
convergence/feasibility over 
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Scenarios we consider

problem class:

is    -smooth 

legacy algorithm:

gradient descent

Scenario A[1]: smooth nonconvex landscapes

convergence guarantee:

asymptotic convergence to 
stationary point

problem class:

are convex

is nonsmooth

legacy algorithm:

accelerated methods
(e.g., heavy-ball, Nesterov…)

Scenario B[2]: composite convex landscapes

convergence guarantee:

linear convergence

[2] A. Martin, I. R. Manchester, and L. Furieri «Learning to optimize with guarantees: a complete characterization of linearly convergent 
algorithms»,   ArXiV 2508.00775

[1] A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», IEEE Control Systems Letters, 2024.
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Learning to optimize for smooth nonconvex landscapes

Scenario A

[1] A. Martin and L. Furieri, «Learning to optimize with convergence guarantees using nonlinear system theory», IEEE Control Systems Letters, 2024.
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Main result 1: a separation principle for algorithms

Consider the iterations:

enhancement termlegacy algorithm: gradient descent
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Main result 1: a separation principle for algorithms

Consider the iterations:

If                     ,  and                         , then 

Evolve gradient descent by designing a finite-energy sequence

enhancement termlegacy algorithm: gradient descent
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Main result 1: a separation principle for algorithms

Consider the iterations:

If                     ,  and                         , then 

Needs proof: exponential stability with            may not imply stability when                      l[1]

Evolve gradient descent by designing a finite-energy sequence

[1] H. K. Khalil and J. W. Grizzle. «Nonlinear systems (Vol. 3)» Upper Saddle River, NJ: Prentice hall, 2002

enhancement termlegacy algorithm: gradient descent
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Main result 2: universality

Take any target algorithm                           converging to a stationary point for all  

Proof insight

The target algorithm                          is equivalent to

for some sequence                with finite energy.  

1. Construct the update rule                matching the algorithm 

2. Prove that                                                      
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Implications

Neural-network parametrizations

Evolve gradient descent using automatic differentiation 

while preserving convergence

Samples from 



European Control Conference, Thessaloniki, 24 June 2025Luca Furieri Learning to optimize with guarantees 19

How to evolve your convergent algorithm with neural networks

neural network 2: direction

neural network 1: vanishing radius[1],[2]

▪ Factorize using two neural networks:

▪ We prove: the factorization above preserves universality

trainable NN

stable nonlinear dynamics

[1] M. Revay, R. Wang, and I.R. Manchester, «Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness ». IEEE 

Transactions on Automatic Control, 2023

[2] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, S. De, «Resurrecting Recurrent Neural Networks for Long Sequences”, ICML, 2024
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Experiment: training a perceptron for image classification

classifier

prediction

tanh

data and labels
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Experiment: training a perceptron for image classification

classifier

prediction

tanh

data and labels

1) train the perceptron with an algorithm (fixed   )
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Experiment: training a perceptron for image classification

After training the classifier, evaluate                                                       …

… backpropagate through

... then update  

classifier

prediction

tanh

data and labels

1) train the perceptron with an algorithm (fixed   )

2) train the algorithm itself (train   )
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Experiment: training a perceptron for image classification

After training the classifier, evaluate                                                       …

… backpropagate through

... then update  

classifier

prediction

tanh

data and labels

2) train the algorithm itself (train   )

1) train the perceptron with an algorithm (fixed   )

3) after training   ,  compare with classical optimizers
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Experiment: training a perceptron for image classification

Activation function: tanh Activation function: sigmoid Activation function: relu

Out-of-sample generalization!
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Experiment: training a perceptron for image classification
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(b) Activation function: sigmoid.
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(c) Activation function: ReLU.

Fig. 1. Training curves of learned and hand-crafted optimizers; shaded areas and solid lines denote standard deviations and mean values,
respectively.

Step t = 20 tanh sigmoid ReLU

Adam 71.7± 5.1% 76.1± 3.1% 52.7± 11.1%
SGD 44.9± 4.2% 79.7± 1.9% 49.8± 9.3%
NAG 79.7± 1.4% 81.1± 1.5% 52.7± 10.2%

RMSprop 69.4± 2.9% 72.8± 2.3% 61.1± 8.9%
ConvergentL2O 87.0 ± 0.5% 86.8 ± 0.6% 86.3± 0.6%

LSTM 82.2± 0.1% 83.3± 0.1% 88.3 ± 0.0%

Step t = 300 tanh sigmoid ReLU

Adam 89.5 ± 0.5% 89.6 ± 0.3% 70.3± 12.2%
SGD 87.4± 0.4% 89.3± 0.3% 80.6± 8.1%
NAG 89.4± 0.2% 89.4± 0.2% 82.2± 7.6%

RMSprop 87.6± 2.1% 88.5± 0.4% 81.5± 7.5%
ConvergentL2O 88.5± 0.2% 88.4± 0.3% 87.7± 0.2%

LSTM 81.4± 0.0% 81.4± 0.0% 88.3 ± 0.0%

the optimization landscape of the ReLU classif er, which may

proveparticularly challenging, ashighlighted in [13], due to its

structural differencewith respect to tanh in (18). Future work

will address the generalization of algorithms trained on the

MNIST dataset to different test datasets, e.g., Fashion-MNIST;

such generalization wasnot achieved using thecurrent shallow

classif er architecture (18).

To compare with alternative L2O approaches [13], we have

trained for 200 epochs a two-layer Long Short-Term Memory

(LSTM) optimizer ut = LSTM(x t ,∇f (x t ), f (x t )). As shown
in the table above, the LSTM optimizer achieves similar aver-

age test accuracy as our ConvergentL2O algorithm. Nonethe-

less, the LSTM output ut does not vanish with time, causing

theclassif er parameters to diverge7 – similar phenomenawere

also observed in [15]. None of our simulations exhibited such

divergence as per Theorem 2.

V. CONCLUSION

In this paper, we have introduced a methodology for learn-

ing over all convergent update rules for smooth non-convex op-

timization, thus enabling the automated synthesis of more re-

liable, eff cient, and reconf gurable algorithms. By synergizing

nonlinear system theory with the emerging L2O paradigm, we

aimed to close thegap between off ine, theory-based algorithm

design and adaptable, example-driven approaches that are the

hallmark of ML. Building on the proposed control-theoretic

perspective we have embraced, further avenues for future

research include certifying stronger convergence guarantees of

7We refer to https://github.com/andrea-martin/ConvergentL2O for the cor-
responding plots and the source code reproducing our numerical examples.

learned algorithms for convex optimization, analyzing gener-

alization capabilities, extending our framework to online and

constrained optimization scenarios, and federated learning.
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Experiment: training a perceptron for image classification
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(b) Activation function: sigmoid.
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(c) Activation function: ReLU.

Fig. 1. Training curves of learned and hand-crafted optimizers; shaded areas and solid lines denote standard deviations and mean values,
respectively.

Step t = 20 tanh sigmoid ReLU

Adam 71.7± 5.1% 76.1± 3.1% 52.7± 11.1%
SGD 44.9± 4.2% 79.7± 1.9% 49.8± 9.3%
NAG 79.7± 1.4% 81.1± 1.5% 52.7± 10.2%

RMSprop 69.4± 2.9% 72.8± 2.3% 61.1± 8.9%
ConvergentL2O 87.0 ± 0.5% 86.8 ± 0.6% 86.3± 0.6%

LSTM 82.2± 0.1% 83.3± 0.1% 88.3 ± 0.0%

Step t = 300 tanh sigmoid ReLU

Adam 89.5 ± 0.5% 89.6 ± 0.3% 70.3± 12.2%
SGD 87.4± 0.4% 89.3± 0.3% 80.6± 8.1%
NAG 89.4± 0.2% 89.4± 0.2% 82.2± 7.6%

RMSprop 87.6± 2.1% 88.5± 0.4% 81.5± 7.5%
ConvergentL2O 88.5± 0.2% 88.4± 0.3% 87.7± 0.2%

LSTM 81.4± 0.0% 81.4± 0.0% 88.3 ± 0.0%

the optimization landscape of the ReLU classif er, which may

proveparticularly challenging, ashighlighted in [13], due to its

structural differencewith respect to tanh in (18). Future work

will address the generalization of algorithms trained on the

MNIST dataset to different test datasets, e.g., Fashion-MNIST;

such generalization wasnot achieved using thecurrent shallow

classif er architecture (18).

To compare with alternative L2O approaches [13], we have

trained for 200 epochs a two-layer Long Short-Term Memory

(LSTM) optimizer ut = LSTM(x t ,∇f (x t ), f (x t )). As shown
in the table above, the LSTM optimizer achieves similar aver-

age test accuracy as our ConvergentL2O algorithm. Nonethe-

less, the LSTM output ut does not vanish with time, causing

theclassif er parameters to diverge7 – similar phenomenawere

also observed in [15]. None of our simulations exhibited such

divergence as per Theorem 2.

V. CONCLUSION

In this paper, we have introduced a methodology for learn-

ing over all convergent update rules for smooth non-convex op-

timization, thus enabling the automated synthesis of more re-

liable, eff cient, and reconf gurable algorithms. By synergizing

nonlinear system theory with the emerging L2O paradigm, we

aimed to close thegap between off ine, theory-based algorithm

design and adaptable, example-driven approaches that are the

hallmark of ML. Building on the proposed control-theoretic

perspective we have embraced, further avenues for future

research include certifying stronger convergence guarantees of

7We refer to https://github.com/andrea-martin/ConvergentL2O for the cor-
responding plots and the source code reproducing our numerical examples.

learned algorithms for convex optimization, analyzing gener-

alization capabilities, extending our framework to online and

constrained optimization scenarios, and federated learning.
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LSTM diverges

due to lack of guarantees
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Scenario B

[2] A. Martin, I. R. Manchester, and L. Furieri «Learning to optimize with guarantees: a complete characterization of linearly 

convergent algorithms»,   ArXiV 2508.00775

Learning to evolve linearly convergent algorithms
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Main result 1: evolving a contraction

Consider the iterations:

If , then 

monotonically linearly convergent:

Evolve contracting algorithms by designing exponentially decaying
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Main result 1: evolving a contraction

If , then 

Evolve contracting algorithms by designing exponentially decaying

Main proof idea: study a perturbed scalar linear system

Same rate    , degree of         +1 

Consider the iterations:

monotonically linearly convergent:
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Main result 1: evolving non-monotonic accelerated algorithms

non-monotonically linearly convergent:

(e.g., Nesterov for strongly convex)

Let             be large enough to satisfy                     .                     

If                      is applied once every      steps, then:  

Consider the iterations:
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Main result 1: evolving non-monotonic accelerated algorithms

trade-off: how often we inject     vs worst-case convergence rate

Let             be large enough to satisfy                     .                     

If                      is applied once every      steps, then:  

Main proof idea: the repeated legacy algorithm                            remains monotonic... 

non-monotonically linearly convergent:

(e.g., Nesterov for strongly convex)

Consider the iterations:
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Main result 2: universality

Take any linearly convergent target algorithm with rate 

The target algorithm                          is equivalent to

for some sequence                with                      if              is monotonic and Lipschitz wrt
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Main result 2: universality

Take any linearly convergent target algorithm with rate 

The target algorithm                          is equivalent to

for some sequence                with                      if              is monotonic and Lipschitz wrt

Proof sketch

▪ The sequence achieving te same iterations as is
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Main result 2: universality

Take any linearly convergent target algorithm with rate 

The target algorithm                          is equivalent to

for some sequence                with                      if              is monotonic and Lipschitz wrt

Proof sketch

▪ The sequence achieving te same iterations as is

vanishes with
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Main result 2: universality

Take any linearly convergent target algorithm with rate 

The target algorithm                          is equivalent to

for some sequence                with                      if              is monotonic and Lipschitz wrt

Proof sketch

▪ The sequence achieving te same iterations as is

vanishes with vanishes with      by assumption
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Main result 2: universality

Take any linearly convergent target algorithm with rate 

The target algorithm                          is equivalent to

for some sequence                with                      if              is monotonic and Lipschitz wrt

Proof sketch

▪ The sequence achieving te same iterations as is

vanishes with vanishes with      by assumption
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problem class:

is strongly convex
is smooth              

legacy algorithm:

heavy-ball, Nesterov,
accelerated methods of [1], [2]

convergence guarantees:

preserves linear convergence

Examples of compatible problems: unconstrained

[1] L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer,  C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021
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problem class:

is strongly convex
is smooth              

legacy algorithm:

heavy-ball, Nesterov,
accelerated methods of [1], [2]

convergence guarantees:

preserves linear convergence

Examples of compatible problems: unconstrained

problem class:

is strongly convex
is convex, nonsmooth

legacy algorithm:

proximal gradient descent

convergence guarantees:

all linearly convergent algorithms

[1] L. Lessard., B. Recht, A. Packard. «Analysis and design of optimization algorithms via integral quadratic constraints». SIAM Journal on Optimization, 2016

[2] C. Scherer,  C. Ebenbauer. «Convex synthesis of accelerated gradient algorithms». SIAM Journal on Control and Optimization, 59(6), 2021
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problem class:

is strongly convex

legacy algorithm:

proximal gradient descent

convergence guarantees:

all linearly convergent algorithms

Examples of compatible problems: constrained

feasibility only upon convergence…
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problem class:

is strongly convex

legacy algorithm:

proximal gradient descent

convergence guarantees:

all linearly convergent algorithms

guarantees if              :

all linearly convergent algorithms

with feasible iterates         

Examples of compatible problems: constrained
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Experiment: solving hard systems of linear equations

slow convergence speed when             is large

…in this example
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Experiment: solving hard systems of linear equations

slow convergence speed when             is large

…in this example

same asymptotic 
rate as NAG

improved transient
behavior

Train              to evolve NAG…
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Conclusions

▪ A characterization of all asymptotically (A) and linearly convergent (B) algorithms

▪ legacy algorithm as a base policy + nonlinear dynamic updates

Neural-network based evolution of classical algorithms
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Conclusions

▪ A characterization of all asymptotically (A) and linearly convergent (B) algorithms

▪ legacy algorithm as a base policy + nonlinear dynamic updates

[1] R. Sambharya, B. Stellato, “Data-Driven Performance Guarantees for Classical and Learned Optimizers”, [ArXiV, 2024]

▪ Performance generalization guarantees[1]

▪ Impact on Model Predictive Control (e.g., evolve IPOPT, OSQP…)

▪ Inverse design, e.g.: «for which control cost is NAG optimal?

Future work

Neural-network based evolution of classical algorithms
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