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Abstract—We consider the problem of designing iterative
optimization algorithms whose performance is targeted at specific
classes of composite optimization problems while inheriting the
worst-case convergence guarantees of a general-purpose legacy
algorithm. Towards this goal, we characterize the class of iterative
optimization algorithms that achieve linear convergence for
classes of nonsmooth composite optimization problems. This is
achieved by starting from any algorithm known to converge
linearly and deriving all – and only – the modifications to its
update rule that preserve this convergence rate. Our results
apply to evolving legacy algorithms such as gradient descent for
nonconvex, gradient-dominated functions; Nesterov’s accelerated
method for strongly convex functions; projected methods for
polytopic-constrained optimization; and the alternating direction
method of multipliers (ADMM) for distributed convex and
composite optimization. Beyond the theoretical scope, these
results find direct application in learned optimization: we show
how to learn over classes of exponentially decaying update
rules to enhance the empirical performance of classical, linearly
convergent optimizers over optimization problems of interest.

I. INTRODUCTION

Guarantees of fast convergence are crucial whenever opti-
mization must be executed under tight computational budgets,
as in large-scale machine learning or real-time model predic-
tive control (MPC). Worst-case linear convergence guarantees
have been developed for iterative optimization algorithms over
several classes of objective functions, whose structure – e.g.,
strong convexity, smoothness, or gradient dominance – can be
exploited by first-order schemes such as standard gradient de-
scent and Nesterov’s accelerated method [1]. A growing body
of work leverages the analogy between worst-case convergence
rates and robust-control techniques such as integral quadratic
constraints (IQCs), leading to characterizations of accelerated
algorithms with provably optimal rates across families of
convex functions [2]–[4].

Worst-case rate guarantees are crucial, as they establish a
baseline performance in terms of the number of iterations
required to achieve a certain level of precision. However,
how well an algorithm performs in a specific application
does not depend solely on its worst-case convergence rate.
First, there exist fundamental trade-offs between the speed
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of convergence and the robustness of algorithmic behaviour;
see, for instance, the speed/covariance trade-off for accelerated
methods in strongly convex optimization analysed in [5]. This
raises the question of how to appropriately define algorithm
performance. A second challenge is that scenarios encoun-
tered in applications rarely span the entirety of the space
of problem instances for which the worst-case guarantee is
tight, resulting in overly conservative average performance.
This introduces another trade-off: how to tailor performance
to these specific instances without compromising the original
uniform guarantees. A prime example of such situation is MPC
[6], where the dynamics and cost are fixed, and only the initial
state varies. In such cases, a solver tailored to this sub-family
of problems could converge in significantly fewer iterations
without compromising worst-case guarantees.

The learning to optimize (L2O) literature addresses the
challenge of adopting user-defined performance metrics be-
yond mere convergence rates and designs algorithms that
are tailored to such metrics using learning algorithms. For
instance, [7] proposes an algorithm performance metric that
balances convergence speed with solution precision and learns
neural network update rules. However, general-purpose neural
network update rules come with no guarantees. Convergence
with learned updates has been addressed through conserva-
tive safeguarding mechanisms [8], or by exploiting an ML
component for optimal tuning of parameters, such as learning
initializations of classical algorithms [9], or tuning the hyper-
parameters of ADMM for accelerated quadratic optimization
via reinforcement learning [10]. These approaches demonstrate
performance exceeding that of state-of-the-art classical algo-
rithms upon training and inherit their convergence guarantees –
at the cost of restricting the learning-based design to parameter
tuning.

Beyond the optimal tuning of classical algorithms, another
line of research seeks to use machine learning to design
entirely new convergent update rules, aiming to discover
application-specific shortcuts unknown to classical update
rules. This has been achieved by taking simple gradient
descent as a baseline and enhancing it through learned opti-
mal deviations from such gradient-based updates. The work
[11] characterizes the class of all and only those devia-
tion functions that ensure convergence to stationary points
in nonconvex, unconstrained smooth optimization, enabling
learned optimization for user-defined performance metrics
and outperforming optimally tuned ADAM [12] in neural
network training. The work [13] uses deep learning to train
deviations from gradient descent and saturates these updates
with the norm of measured gradients, ensuring convergence for
composite convex optimization. The numerical studies of [11],
[13] empirically demonstrate that convergence rates superior to



those of classical algorithms can be achieved through training
on gradient descent deviations. However, there is no theoretical
guarantee that this improvement will always occur.

Motivated as outlined above, in this paper, we characterize
the class of all linearly convergent algorithms in convex and
composite optimization. One of our main goals is to address
a question that has remained open in the literature of learned
optimization. Given any state-of-the-art algorithm for solving
a class of optimization problems – such as the optimally tuned
Nesterov method for strongly convex smooth optimization –
how can we improve its average performance over a class of
instances of interest without sacrificing its convergence rate
over the entire class of problems?

We believe that a theoretical study of these trade-offs is
fundamental to making learned optimization a standard and
reliable component of algorithm design.

Contributions: Given any existing optimization algorithm
that achieves linear convergence to fixed points at a specified
rate – henceforth the base algorithm – our main contributions
are as follows. First, we characterize the conditions on the
base algorithm under which adding exponentially decaying
perturbations preserves the same linear convergence rate, up
to a higher-order polynomial term. Second, we relax these
conditions and identify fundamental trade-offs between the
frequency of perturbations and their worst-case impact on the
linear convergence rate. Third, we establish a completeness
result for linearly convergent optimization: every update rule
that converges linearly at a given rate can be written as the sum
of the base algorithm and a suitably designed exponentially
decaying perturbation function. Finally, we characterize the
classes of all linearly convergent update rules in the context of
classical algorithms adapted to various smooth and nonsmooth
optimization settings. Notably, these include:

1) Gradient descent for nonconvex Polyak–Łojasiewicz (PL)
functions;

2) Accelerated methods for strongly convex optimization;
3) Proximal gradient methods for convex optimization with

polytopic constraints;
4) ADMM for distributed convex and strongly convex opti-

mization.

Notation: The set of all sequences x = (x0, x1, x2, . . .)
where xt ∈ Rn for all t ∈ N is denoted as ℓn. For x ∈
ℓn, we denote by zx = (x1, x2, x3, . . .) the sequence shifted
one time-step forward. Moreover, x belongs to ℓn2 ⊂ ℓn if
∥x∥2 =

√∑∞
t=0 |xt|2 < ∞, where | · | denotes any vector

norm. When clear from the context, we omit the superscript
n from ℓn and ℓn2 . For a function g : Rn → Rm, we write
g (x) = (g(x0), g(x1), . . .) ∈ ℓm. For m ∈ N, we use Pm(x)
to denote the set of positive and monotonically non-decreasing
polynomials of degree at most m in the variable x. We define
the set of fixed points of an operator π, assumed non-empty,
as Fixπ . For m ∈ N and γ ∈ (0, 1), we denote by ℓexp(m, γ)
the class of signals x for which there exists a polynomial
pm(t) ∈ Pm(t) such that |xt| ≤ pm(t)γt.

II. PROBLEM FORMULATION

We consider composite optimization problems of the form

min
x∈Rd

f(x) + g(x) , (1)

where x ∈ Rd is the decision variable, and the objective
function is such that f : Rd → R is proper and β-
smooth, and g : Rd → R ∪ {+∞} is convex, proper, and
lower semi-continuous, but potentially nonsmooth. We let
F (x) = f(x) + g(x) for brevity, and we assume that the
set of optimizers X ⋆ = argminx∈Rd F (x) is non-empty. In
particular, we note that (1) subsumes constrained optimization
problems of the form

min
x∈Rd

f0(x) (2a)

subject to fi(x) ≤ 0 , ∀i ∈ [1,M ] , (2b)

where f0 : Rd → R is β-smooth, and each function fi : Rd →
R with i ∈ [1,M ] defines a non-empty convex feasibility set
Xi ⊆ Rd. In fact, one can rewrite (2) as an instance of (1)
letting f(x) = f0(x) and g(x) = maxi∈[1,M ] IXi(x).

A standard method to solve problem (1) is to analytically
construct iterations of the form:

ξt+1 = π(F, ξt) , ξ0 ∈ Rn , t ∈ N , (3)

where ξt ∈ Rn, and the operator π is designed so that its set of
fixed points Fixπ , that is, the points ξ⋆ such that π(F, ξ⋆) = ξ⋆

is closely related to X ⋆; that is, either X ⋆ ≡ Fixπ or a point
x⋆ ∈ X ⋆ can be easily reconstructed from a point ξ⋆ ∈ Fixπ .

A key metric for the performance of algorithms (3) when
applied to a class of problems F ∈ F is how fast they converge
to Fixπ . Classical optimization algorithms often come with
convergence guarantees that hold for the worst-case instance
of F ∈ F . However, optimal control methods such as MPC
require efficiently finding solutions to the instances of (1) that
are encountered during deployment, where the objective F
is drawn from a specific distribution DF over the class F .
Motivated as such, in this work we investigate the following
question.

Given a legacy algorithm π to solve (1), how can we im-
prove its average performance on specific functions F ∼ DF ,
while retaining worst-case convergence guarantees over the
entire class F?

In particular, this paper characterizes algorithms ν that
achieve linear convergence to Fixπ for classes of functions
F ∈ F .

Definition 1: An algorithm ξt+1 = νt(F, ξt:0) is linearly
convergent to Fixπ for F with rate γ ∈ (0, 1) if and only if
there exists a polynomial p(t) ∈ Pm(t) such that

dist(ξt, Fixπ) ≤ p(t)γt dist(ξ0, Fixπ) , ∀ξ0 ∈ Rn , ∀F ∈ F ,
(4)

at all times, where dist(·, ·) is a distance function. In this
case, we write that ν ∈ pExpπF (m, γ). When the focus is
not on the polynomial order and only on the exponential
convergence rate, we write ν ∈ p̂Exp

π

F (γ). Additionally, if
(4) holds with a constant polynomial p(t) = 1, then we say
that ν is monotonically linearly convergent to Fixπ and we
write ν ∈ ExpπF (γ).



To enhance the average performance of a base algorithm π
on problem instances F ∼ DF , we aim to design algorithm
updates vt ∈ Rn that do not jeopardize its convergence
guarantees. Specifically, we consider the evolved algorithm
defined by the iterations.

ξt+1 = νt(F, ξt:0) = π(F, ξt) + vt(F, ξt:0) , ξ0 ∈ Rn , (5)

and we establish conditions ensuring that such evolved algo-
rithm ν is linearly convergent as per (4).

III. MAIN RESULTS

In this section, we establish our main results on how
introducing an evolution term vt affects the worst-case linear
convergence guarantees of a given base optimization algorithm
π. We first abstract away from the specific form of π and
the class of functions F it is designed to optimize; we only
assume that π is a linearly convergent fixed-point algorithm as
per Definition 1. In Section III-B, we present several classes
of problems (1) and corresponding base algorithms π that are
compatible with our framework, making them amenable to
learning-based enhancement of average performance.

A. Characterizations of linearly convergent algorithms and
their completeness under (5)

Consider a base algorithm π that achieves linear conver-
gence as per Definition (1). The property (4) implies that the
signal dist(ξt, Fixπ) decays exponentially up to a polynomial
factor p(t), for any initial condition ξ0 and any objective
F ∈ F . We first characterize to what extent injecting exponen-
tially decaying signals vt in the iterates of (5) can deteriorate
the convergence guarantee of π.

Theorem 1: Consider the recursion (5) and assume that π ∈
pExpπF (m, γ). Choose any N ∈ N such that ρ = p(N)γN < 1
and any auxiliary signal w ∈ ℓexp(m, ρ). For every t ∈ N
construct the evolution signal vt in (5) as follows:

vt =

{
w t+1

N −1 if t+ 1modN = 0 ,

0 otherwise .
(6)

Then, the iterates of (5) satisfy:

dist(ξ, Fixπ) ∈ ℓexp(m+ 1, N
√
p(N)γ) . (7)

We report the proof of Theorem 1 in Appendix A. Theorem 1
establishes a trade-off between how often we inject an ex-
ponentially decaying perturbation – as measured by N ∈ N
– and the degradation of the convergence rate. In particular,
when N = 1, we observe that the asymptotic rate γ does not
change, as only the order of the polynomial factor in (4) is
affected. For the general case where N > 1, the convergence
rate increases at most to the value N

√
p(N)γ ∈ (γ, 1). As

expected, when N tends to infinity, we recover the original
rate of the base algorithm because limN→∞

N
√
p(N) = 1;

this corresponds to the case vt = 0 for all t.
A first challenge is that more frequent learned updates of

the base algorithm require a lower value for N , resulting
in a deteriorated convergence rate according to (7), that is
ν ̸∈ p̂Exp

π

F (γ). Second, it is crucial to understand how large

is the class of linearly convergent algorithms ξt = νt(F, ξt:0)
that can be achieved by perturbing a base algorithm π with
an exponentially decaying learned update vt as per (5). Our
next result establishes conditions on the base algorithm π
that simultaneously address the two concerns above. First, we
ensure that the evolved algorithm ν lies in p̂Exp

π

F (γ) for any
v that exponentially decays with rate γ. Second, we guarantee
that any algorithm in pExpπF (m, γ) can be represented –
provided that such target algorithm satisfies the following
regularity condition.

Definition 2: Define the sequence of updates ut = ξt+1 −
ξt associated with a linearly convergent algorithm ν ∈
pExpπF (m, γ). We say that ν is regular, if and only if the
sequence of updates vanishes with the same exponential rate,
that is,

u = zξ − ξ ∈ ℓexp(m, γ) .

In other words, the definition above excludes pathological
cases of linearly convergent algorithms that can cycle indefi-
nitely among the points in Fixπ even when dist(ξt, Fixπ) =
0. We are ready to present our completeness result.

Theorem 2: Let π ∈ ExpπF (γ) be a base algorithm such that
π(F, ξ) is Lipschitz continuous in ξ. Consider the evolved
algorithm ν with iterates ξt defined as per (5), and any target
algorithm χt+1 = σt(F, χt:0) such that σ ∈ pExpπF (m, γ). If
σ is regular, there exists a sequence v(F, ξ) ∈ ℓexp(m, γ) such
that the iterations of ν initialized with ξ0 = χ0 are equivalent
to those of σ. Additionally, the evolved algorithm ν belongs
to p̂Exp

π

F (γ) for any v ∈ ℓexp(m, γ) with m ∈ N.
A few remarks are in order. First, the completeness property

of Theorem 2 is key in the context of automating the design
of evolved algorithms, as it implies that (5) encompasses all
linearly convergent algorithms in pExpπF (m, γ). Second, when
we learn an evolution term v ∈ ℓexp(m, γ) by searching
over the entire space of exponentially decaying updates, it is
crucial that the base algorithm satisfy the stronger condition
π ∈ ExpπF (γ). If instead π ∈ pExpπF (m, γ ) \ ExpπF (γ), then
Theorem 1 only guarantees linear convergence – with the
degraded rate N

√
p(N) γ – for those v chosen exactly as in

(6). In other words, without π ∈ ExpπF (γ), most perturbations
in ℓexp(m, γ) would not preserve linear convergence, signifi-
cantly limiting the designer ability to freely explore the space
of updates. Third, the assumption that π(F, ξ) is Lipschitz
continuous in ξ is mild; we will show in the next section that
this condition is satisfied for important base algorithms widely
used for convex and composite optimization.

B. Application to convex and composite optimization

Here, we show how Theorem 1 and Theorem 2 can be
used to evolve existing solvers for convex and composite
optimization problems in the form (1) drawn from specific
classes F .

The case of smooth optimization: We first consider the case
(1) where g(x) = 0 for all x ∈ Rd, leaving us with the
task of minimizing a β-smooth function F (x) = f(x). Our
first result focuses on classes of possibly nonconvex functions
for which standard gradient descent achieves monotonic linear
convergence.



Corollary 1: Let Fβ,µ
RSI be the class of β-smooth functions

satisfying the restricted secant inequality (RSI) with constant
µ > 0, that is, those for which it holds

∇F (x)⊤(x− x⋆) ≥ µ

2
dist(x,X ⋆)2 , ∀x ∈ Rd , (8)

for any x⋆ in argminy∈X⋆ dist(x, y)2. Let π be the gra-
dient descent update rule π(F, ξt) = ξt − η∇F (ξt) with
η = µ

β2 , and γ =
√
1− µ2

β2 . Then, any regular algorithm
σ ∈ pExpπ

Fβ,µ
RSI

(m, γ) can be written as

xt+1 = νt(F, xt:0) = xt − η∇F (xt) + vt(F, xt:0) , (9)

with v ∈ ℓexp(m, γ). Viceversa, for any v ∈ ℓexp(m, γ), the
algorithm (9) is such that ν ∈ p̂Exp

π

Fβ,µ
RSI

(γ).
Proof: By Theorem 2.1 of [14], it holds that (4) holds for the

gradient descent algorithm ξt+1 = π(F, ξt) = ξt − η∇F (ξt)
with η = µ

β2 with γ =
√

1− µ2

β2 ∈ (0, 1). Further, we
have that π(F, ξt) is Lipschitz continuous since |π(F, x) −
π(F, y)| = |x− y − η∇F (x) + η∇F (y)| ≤ (1 + ηβ)|x− y|,
where the last inequality follows from the β-smoothness of
F ∈ Fβ,µ

RSI . The result then follows by applying Theorem 2.
The result of Corollary 1 enables learning over the

class of all the linearly convergent regular algorithms in
pExpπ

Fβ,µ
RSI

(m, γ), while ensuring that the evolved algorithm

(9) never leaves the class p̂Exp
π

Fβ,µ
RSI

(γ), irrespectively of how
“badly” the enhancement term v ∈ ℓexp(m, γ) may be chosen.

A few comments regarding the generality of the class of
functions Fβ,µ

RSI are in order. First, FRSI encompasses certain
nonconvex functions, as highlighted in [15]. Second, it holds
that Fβ,µ

SC ⊂ Fβ,µ
cPL ⊂ Fβ,µ

RSI , where Fβ,µ
SC is the set of β-

smooth and strongly convex functions complying with

F (y) ≥ F (x) +∇F (x)⊤(y − x) +
µ

2
|y − x|2 , (10)

for some µ > 0, and Fβ,µ
cPL is the set of all the β-smooth

and convex functions that comply with the Polyak–Łojasiewicz
(PL) inequality

F (x)− min
x∈Rd

F (x) ≤ 1

2µ
|∇F (x)|2 , (11)

for some µ > 0.

Remark 1: It is well known that Fβ,µ
RSI ⊆ Fβ,µ

2

4β

PL , where
Fβ,µ

PL is the set of all possibly nonconvex functions satisfying
(11), see [16]. For functions in Fβ,µ

PL , the gradient descent
rule π(F, x) = − 1

β∇F (x) achieves linear convergence in the
function value as per

F (xt)− F ⋆ ≤
(
1− µ

β

)t

(F (x0)− F ⋆) .

However, π induces a monotonically linearly convergent se-
quence of iterates only if the restricted secant inequality (8)
also holds, see [14].

Corollary 1 ensures a complete parametrization of linearly
convergent regular algorithms with the same rate γ as gradient
descent for all functions in Fβ,µ

RSI . For the special case F ∈
Fβ,µ

SC , one typically wants to evolve ad-hoc algorithms tailored
to Fβ,µ

SC such as Nesterov’s accelerated gradient (NAG) [1], the

Heavy-Ball method [17], [18], or optimal-rate algorithms such
as those characterized in [2], [19].

Motivated as such, we show compatibility of the proposed
framework with the evolution of accelerated algorithms for
objectives F ∈ Fβ,µ

SC .
Corollary 2: Consider the NAG algorithm

π(F, ξt) =

[
1 + α −α
1 0

]
ξt +

[
−η
0

]
∇F

([
1 + α −α

]
ξt
)
,

(12)
where ξt =

[
x⊤t x⊤t−1

]⊤
and α ≥ 0 is the momentum

coefficient. Let η = 1
β and α =

√
κ−1√
κ+1

, where κ = β
µ ≥ 1

is the condition number. Choose any target rate degradation
factor τ ∈ (1, 1γ ), where γ =

√
1− 1√

κ
. Then, for any N ∈ N

such that p(N) < τN and v constructed as per (6) using any
w ∈ ℓexp(m, τγ), the evolved algorithm ν(F, ξt:0) defined by
ξt+1 = π(F, ξt) + vt , is such that ν ∈ p̂Exp

π

Fβ,µ
SC

(τγ).
Proof: It is well known that the NAG algorithm (12) applied

to the class Fβ,µ
SC with the parameters α and η as above is such

that π ∈ pExpπF (0, γ), see [1], [2]. Since N
√
p(N) < τ < 1

γ ,
we have that p(N)γN < 1 and Theorem 1 applies.

While Corollary 2 focuses on the case where NAG is used
as the base algorithm π in (5), we remark that the results
extend analogously to any base algorithm π ∈ pExpπ

Fβ,µ
SC

(m, γ)

such as those with optimal convergence rates designed using
integral quadratic constraints (IQCs) as per [2], [19]. As also
discussed after Theorem 1, we note that enhancing accelerated
algorithms, which are not monotonic in general, involves a
trade-off between keeping the worst-case degradation rate τ
as small as possible and the frequency at which we can apply
a learned update. Last, we remark that one can always impose
a target τ ∈ (1, 1γ ). Indeed, a large enough N ∈ N such
that p(N) < τN always exists since the exponential term
dominates over the polynomial one.

The case of nonsmooth optimization: We now turn our at-
tention to the case (1) where the objective F (x) = f(x)+g(x)
is nonsmooth. Our first result focuses on the class F ∞,µ

cPL of
potentially nonsmooth proper, lower semi-continuous, convex
functions that comply with the following inequality

F (x)− min
x∈Rd

F (x) ≤ 1

2µ
dist(0, ∂F (x))2 , (13)

where ∂F (x) is the convex subdifferential of F at x, defined as
∂F (x) =

{
s ∈ Rd : F (y) ≥ F (x) + s⊤(y − x) , ∀y ∈ Rd

}
.

In particular, note that (13) corresponds to (11) when F is
differentiable.

Corollary 3: Consider the class of functions F ∈ F ∞,µ
cPL . Let

π be the proximal point algorithm performing the iterations

xt+1 = proxcF (xt) = min
x∈Rd

F (x) +
1

2c
|x− xt|2 , (14)

where c > 0. Let γ = min

{
1√

1+cµ
, 1√

1+ c2

βµ

}
∈ (0, 1). Then,

any regular algorithm σ ∈ pExpπF∞,µ
cPL

(m, γ) can be written as

xt+1 = νt(F, xt:0) = proxcF (xt) + vt(F, xt:0) , (15)

with v ∈ ℓexp(m, γ). Viceversa, for any v ∈ ℓexp(m, γ), the
algorithm (15) is such that ν ∈ p̂Exp

π

F∞,µ
RSI

(γ).



Proof: Similarly to Corollary 1, the result follows by
combining our Theorem 2 with the linear convergence result
of the proximal point method (14) when applied to functions
F ∈ F∞,µ

cPL from [14, Theorem 4.2] and the definitions of error
bound and quadratic growth from [16].

The result of Corollary 3 holds for any objective F ∈ F∞,µ
cPL .

In particular, F∞,µ
cPL encompasses the class of optimization

problems (1), where f ∈ Fβ,µ
SC and g ∈ F∞

C , that is, g(x) is
nonsmooth and convex, for which ad-hoc algorithms have been
developed to exploit the structure underlying these composite
problems. Our next result focuses on the case where g(x)
represents the indicator function of a set of convex linear
constraints (2b) to address constrained optimization problems
of the form (2) with f0 ∈ Fβ,µ

SC .
Corollary 4: Consider the constrained optimization prob-

lem (2) with f0 ∈ Fβ,µ
SC and fi(x) = Aix−bi for all i ∈ [1,M ]

and define the feasible set X = {x ∈ Rd : fi(x) ≤ 0, ∀i ∈
[1,M ]}. Let g(x) = IX (x) and define Fcomp as the set of all
such functions F (x) = f0(x) + g(x). Let π be the proximal
gradient descent method performing the iterations

xt+1 = min
x∈Rd

g(x) +
1

2
|x− (xt − η∇f(xt)|2 (16)

= proxg(xt − η∇f(xt)) = projX (xt − η∇f(xt)) ,

where η ∈ (0, 1
β ]. Consider any regular algorithm χt+1 =

σt(F, χt:0) with feasible iterates χt ∈ X and such that σ ∈
pExpπFcomp

(m, γ), with γ = 1 − ηµ. Then, there exists v ∈
ℓexp(m, γ) such that at all times Aivt ≤ 0 for all i ∈ [1,M ],
and the evolved algorithm

xt+1 = νt(F, xt:0) = projX (xt − η∇f(xt)) + vt(F, xt:0) ,
(17)

is equivalent to σ. Viceversa, for any v ∈ ℓexp(m, γ) such
that at all times Aivt ≤ 0 for all i ∈ [1,M ], the algorithm
(17) is such that the iterates xt ∈ X and ν ∈ p̂Exp

π

Fcomp
(γ).

Proof: The base algorithm π defined in (16) is such that
π ∈ ExpπFcomp

(1 − ηµ) as shown in [20, Theorem 11.5].
Now, consider any regular algorithm χt+1 = σt(F, χt:0) with
feasible iterates χt ∈ X and such that σ ∈ pExpπFcomp

(m, γ),
with γ = 1 − ηµ. Its iterates are equivalent to those of (17)
by choosing

vt = −π(F, χt) + σt(F, χt:0) , x0 = χ0 . (18)

Next, we verify that Aivt ≤ 0 for all i ∈ [1,M ]. We have

Aivt = −Aiπ(F, χt) +Aiσt(F, χt:0)

= −Ai projX (χt − η∇f(χt)) +Aiχt+1 ,

where both χt+1 and χ̃t+1 := projX (χt − η∇f(χt)) lie in
X by definition, and hence Aiχt+1 ≤ b and Aiχ̃t+1 ≤ b.
It follows that Aivt ≤ 0. Next, we verify that π(F, x) is
Lipschitz in x. Since the projection onto an affine subspace is
1-Lipschitz, it holds that

|π(F, x)− π(F, y)| ≤ |x− y + η∇f(y)− η∇f(x)|
≤ (1 + ηβ)|x− y| .

Last, analogously to the proof of Theorem 2, it holds that
v ∈ ℓexp(m, 1 − ηµ) because σ is regular. Viceversa, if v ∈

ℓexp(m, γ) is such that at all times Aivt ≤ 0 for all i ∈ [1,M ],
the iterates of (17) are feasible because Ai(π(F, xt)+vt) ≤ b,
and ν ∈ p̂Exp

π

Fcomp
(1− ηµ) by Theorem 1.

Leveraging the composite structure of (2), Corollary 4
addresses the requirement of ensuring feasibility of all iterates
of (17) in optimization problems with polytopic constraints.
In fact, while Corollary 3 guarantees convergence rates of the
evolved algorithm ν, feasibility of iterates xt of (15) maybe
be lost for arbitrary choices of v ∈ ℓexp(m, γ).

Last, we turn our attention to evolving the alternating di-
rection method of multipliers (ADMM) algorithm [21], which
is well-suited for multi-agent optimization settings where
minimizing a global cost function F (x) = f(x)+g(x) can be
parallelized by iteratively and separately optimizing for f(x)
and g(x) according to the iterations:

x
[1]
t+1 = argmin

x
f(x) +

ρ

2
|x− x

[2]
t + ut|2 , (19a)

x
[2]
t+1 = argmin

x
g(x) +

ρ

2
|x[1]t+1 − x+ ut|2 , (19b)

ut+1 = ut + x
[1]
t+1 − x

[2]
t+1 , (19c)

where (19a) and (19b) represent the updates of two different
agents, (19c) is an aggregation step, and ρ > 0 is a hyper-
parameter whose tuning is critical for fast convergence. Since
x
[1]
t does not enter the updates on the right-hand side of (19a)-

(19c), one can define ξt = (x
[2]
t , ut) and express (19a)-(19c)

equivalently as:

ξt+1 = π(ξt) =

[
argminx g(x) +

ρ
2 |y(x

[2]
t , ut)− x+ ut|2

ut + y(x
[2]
t , ut)− z(x

[2]
t , ut) ,

]
(20)

where we let y(x[2]t , ut) denote the right-hand-side of (19a)
and z(x[2]t , ut) denote the right-hand-side of (19b) to highlight
the dependency on ξt only.

Corollary 5: Consider the optimization problem (1), where
f ∈ Fβ,µ

SC and g ∈ F∞
C . Let π be the ADMM algorithm

(20) with ρ = µβ and consider the evolved algorithm ξt+1 =
π(ξt) + vt(ξt:0) = νt(ξt:0) corresponding to the iterations

x
[1]
t+1 = argmin

x
f(x) +

ρ

2
|x− x

[2]
t + ut|2 , (21)

x
[2]
t+1 = argmin

x
g(x) +

ρ

2
|x[1]t+1 − x+ ut|2+ (22)

+ v
[2]
t (x

[1]
t+1:0, x

[2]
t:0, ut:0) , (23)

ut+1 = ut + x
[1]
t+1 − x

[2]
t+1 + vut (x

[1]
t+1:0, x

[2]
t+1:0, ut:0) , (24)

where vt = (v
[2]
t , vut ). Let γ = 1 − 1

2
√
κ

, where κ = β
µ is

the condition number of f . Then, for any v ∈ ℓexp(m, γ), the
evolved ADMM algorithm ν is such that ν ∈ p̂Exp

π

F (γ).
Proof: It has been proven in [22] that π ∈ pExpπF (0, γ).

Further notice that π ∈ ExpπF (0, γ) because κB of [22] is
equal to 1 and because the iterations (19a)-(19c) correspond
to the choice α = 1 in [22]. The result of Theorem 1 thus
applies with N = 1.

As opposed to Corollary 2 for the case of smooth strongly
convex optimization using NAG as a base algorithm, the accel-
erated convergence rate of ADMM can be exactly preserved.



C. How to evolve an algorithm with neural networks
In order to evolve legacy algorithms according to theorems

above, we consider objective functions drawn from a specific
distribution DF representing problems encountered in a spe-
cific application, tailored to which we aim to evolve a linearly
convergent base algorithm π ∈ p̂Exp

π

F (γ). The algorithm
design problem can be expressed as

min
v0,v1,...

EF∼DF [AlgoPerf(F, ξ)] (25a)

subject to ξt+1 = ξt + π(F, ξt) + vt(ξt:0), (25b)

ξ ∈ ℓexp(m, γ), ∀ξ0 ∈ Rd , (25c)

where m ≥ m and γ ∈ [γ, 1) represent a target linear
convergence rate, and AlgoPerf(·) measures the performance
of the evolved algorithm (25b) initialized at ξ0 in optimizing
the function F . We refer to [7], [9], [23] for commonly used
algorithm performance metrics.

In order to search over update functions vt(ξt:0), and
similar to the technique introduced in [11], it is convenient to
decompose exponentially decaying evolution terms vt(F, ξt:0)
as per

vt(F, ξt:0) =Mt(F, ξ0)Dt(F, ξt:0) , (26)

where M(F, ξ0) ∈ ℓexp(m, γ) must be an exponentially
decaying magnitude term for any ξ0, and |Dt(F, ξt:0)| ≤ 1
is an arbitrarily designed direction term. One can, for instance
employ a finite-dimensional parametrization of vt in (26)
as per

vt = LRUt(ξ0, θ) tanh(NN(ξt, ϕ)) , (27)

where the LRUt(θ)(vt:0) terms are generated by the linear
recurrent unit (LRU) [24] defined as;

ζt+1 = Λ ξt + Γ(Λ)Bwt, (28)
LRUt((wt:0) = NN(Re(C ζt) +Dwt, ψ) + Fwt ,

where Re denotes the real part operator and θ =
(Λ, C,D, F, ψ), w0 = ξ0 and wt = 0 for all t ∈ [1,∞), and
crucially, Λ is a stable matrix. As a result, the magnitude term
LRUt(ξ0, θ) will decay exponentially to a rate we can design,
and the direction term tanh(NN(ξt, ϕ)) picks the direction of
the updates without affecting the magnitude. One can then
improve the empirical performance of a legacy algorithm by
evaluating it over several runs and backpropagating using
standard libraries such as Pytorch. The final version of this
manuscript will incude numerical results.

APPENDIX

A. Proof of Theorem 1
We first prove the result by assuming that π ∈ ExpπF (γ).

This is instrumental towards establishing the general result.
Let δt = dist(ξt, Fixπ) for compactness. By the algorithm
definition (5) and the triangle inequality, we have that for every
F ∈ F

δt = dist(π(F, ξt−1) + vt−1, Fixπ)

= inf
c∈Fixπ

dist(π(F, ξt−1) + vt−1, c)

≤ inf
c∈Fixπ

dist(π(F, ξt−1), c) + |vt−1|

= dist(π(F, ξt−1), Fixπ) + |vt−1| .

Assuming that π ∈ ExpπF (γ), we have that (4) holds with
p(t) = 1. It follows that δt ≤ γδt−1 + |vt−1|. Iterating this
inequality, we deduce that

δt ≤ γtδ0 +

t−1∑
k=0

γk|vt−1−k|

≤ γtδ0 +

t−1∑
k=0

γkp(t− 1− k)γt−1−k

≤ γt

(
δ0 +

1

γ

t−1∑
k=0

p(k)

)
,

where we used the fact that v ∈ ℓexp(m, γ). Let q(t) =∑t
k=0 p(k) and note that the right-hand side of the above

can be written as γtr(t) where r(t) = δ0 + 1
γ q(t − 1). We

study q(t). By linearity of summation, q(t) can be equivalently
rewritten as

t∑
k=0

m∑
j=0

ajk
j = am

t∑
k=0

km + · · ·+ a1

t∑
k=0

k + a0

t∑
k=0

1 ,

where aj ∈ R with j ∈ {0, . . . ,m} is the j-th coefficient of
the polynomial p(·). Faulhaber’s formula implies that q(t) is a
polynomial of degree m+ 1 in the variable t with coefficient
bm+1 = am

m+1 . Furthermore, q(t) is positive and monotonically
non-decreasing by construction, that is, q(t) ∈ Pm+1(t). Note
that q(t) ∈ Pm+1(t) implies r(t) ∈ Pm+1(t). Hence, we
conclude that δt ≤ r(t)γt for all t ∈ N, which proves the
result for the case π ∈ ExpπF (γ).

We now turn our attention to the general case where π is
any linearly convergent algorithm in pExpπF (m, γ). For any
wt ∈ ℓexp(m, γ), consider the recursion

ζk+1 = πN (F, ζk) + wt , (29)

where πN (·) denotes the repeated application of π defined as
πN (F, ζk) = π(F, πN−1(F, ζk)) with π1(F, ζk) = π(F, ζk).

We first observe that, if ζ0 = ξ0 and v is constructed as per
(6), then (29) is equivalent to (5) in the sense that ζk = ξNk for
every k ∈ N. By construction, πN ∈ ExpπF (ρ) and therefore
complies with (4) with p(t) = 1 and γ = ρ. Hence, as proven
above, it holds that

dist(ζ, FixπN ) ∈ ℓexp(m+ 1, ρ) .

We now argue that FixπN = Fixπ . Clearly, FixπN ⊇ Fixπ
since ξ⋆ = π(F, ξ⋆) for every ξ⋆ ∈ Fixπ and thus ξ⋆ =
πN (F, ξ⋆). To show that FixπN ⊆ Fixπ , assume there exists
ζ⋆ ∈ FixπN such that ζ⋆ /∈ Fixπ . Since π ∈ pExpπF (m, γ),
we have that limt→∞ dist(πt(F, ζ⋆), Fixπ) = 0. At the same
time, dist(πτN (F, ζ⋆), Fixπ) > 0 for any τ ∈ N because
πτN (F, ζ⋆) = ζ⋆ /∈ Fixπ . This is a contradiction, and thus
FixπN = Fixπ . We conclude that

dist(ζ, Fixπ) ∈ ℓexp(m+ 1, ρ) ,

and therefore there exists a polynomial q(k) ∈ Pm+1(k) such
that dist(ζk, Fixπ) ≤ q(k)ρk for all k ∈ N.

Next, we note that, for any s ∈ {1, . . . , N − 1}

dist(ξNk+s, Fixπ) = dist(πs(F, ξNk), Fixπ)

≤ p(s)γs dist(ξNk, Fixπ) ≤ p(s)γsq(k)ρk ,



where we used the fact that dist(ξNk, Fixπ) = dist(ζk, Fixπ)
for any k ∈ N. Letting t = Nk + s, and using the fact that
p(·), q(·) ∈ Pm+1, we obtain

dist(ξt, Fixπ) ≤ p(N − 1)γq

(⌊
t− s

N

⌋)
ρ⌊

t−s
N ⌋

≤ p(N − 1)γq

(
t

N

)
ρ⌊

t−N+1
N ⌋

≤ p(N − 1)γ

ρ2−
1
N

q

(
t

N

)
︸ ︷︷ ︸

r(t)∈Pm+1(t)

(
ρ

1
N

)t
.

Since ρ = p(N)γN , we have that ρ
1
N = N

√
p(N)γ. This

concludes the proof.

B. Proof of Theorem 2

Let vt(F, ξt:0) = −π(F, χt) + σt(F, χt:0). We first show
by induction that ξt = χt at all times, starting from the base
case ξ0 = χ0, which holds by construction. Assume now that
ξt:0 = χt:0. We aim to prove that ξt+1 = χt+1. This holds
because

ξt+1 = π(F, ξt)− π(F, χt) + σt(F, χt:0)

= σt(F, χt:0) = χt+1 .

It remains to show that the sequence vt(F, ξt:0) = −π(F, χt)+
σt(χt:0) belongs to ℓexp(m, γ). To prove this, we rewrite vt
as

vt = −(π(F, χt)− χt) + σt(F, χt:0)− χt . (30)

Since π(F, ·) is Lipschitz continuous, letting χp
t be any

element of argminχ∈Fixπ |χ − χt|2, there exists a constant
Lπ ∈ R+ such that

|π(F, χt)− χt| = |π(F, χt)− χp
t + χp

t − χt|
= |π(F, χt)− π(F, χp

t ) + χp
t − χt|

≤ (Lπ + 1)|χt − χp
t |

= (Lπ + 1) dist(χt, Fixπ) ,

and hence −(π(F,χ)−χ) ∈ ℓexp(m, γ). We further have that
σ(F,χ)−χ ∈ ℓexp(m, γ) by the regularity assumption on σ
as per Definition 2. Since the sum of signals in ℓexp(m, γ)
belongs to ℓexp(m, γ), we conclude the proof by inspection
of (30).
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